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Markov random fields

XA ⊥⊥ XB |XC

XA 6⊥⊥ XC |XB ⇐⇒

XC 6⊥⊥ XB |XA
A

B

C



Why are Markov random fields interesting?

Worrying

Sleep problems

Depression Symptoms



Existing structure estimation methods

Gaussian Binary (Ising model)



Structure estimation in the Gaussian case

1
2

3

4
⇐⇒


X1 X2 X3 X4

X1 3.45 0 0 3.18
X2 0 2.14 0 0.82
X3 0 0 3.21 1.05
X4 3.18 0.82 1.05 8.77



Estimation:

I glasso (Friedman et al., 2008)

I Nodewise methods (Meinshausen & Bühlmann, 2006)



Structure estimation for the Ising model

Estimation via nodewise methods:

I `1-regularized logistic regression (Ravikumar et al.,2010)

I eLasso (van Borkulo et al., 2014)



Mixed Markov random fields

How many times ... ?

How much do you agree with ... ?

Reaction time
Gender

IQ-Score



Gaussianizing variables

Two approaches:

I Copula-based (Dobra and Lenosti, 2001; Liu et al. 2012)

I Non-paranormal (Liu et al., 2009; Lafftery et al. 2012)



Conditional Gaussian

Multivariate gaussian conditioned
on 2|Binary nodes| configurations.

Improvements:

I Only pairwise interactions (Lee and Hastie, 2012)

I Only up to three-way interactions (Cheng et al., 2013)



How to estimate mixed Markov random fields in a
principled way?

+

EstimationModeling



Modeling mixed Markov random fields

Conditional univariate
distributions Joint distribution

(Yang et al., 2014)



Mixed exponential Markov random fields

Conditional univariate members of the exponential family

P(Xs |X\s) = exp
{
Es(X\s)φs(Xs) + Cs(Xs)− Φ(X\s)

}
,

factorize to a global multivariate distribution which factors
according the graph defined by the node-neighborhoods if and only
if Es(X\s) has the form:

θs +
∑

t∈N(s)

θstφt(Xt) + ...+
∑

t2,...,tk∈N(s)

θt2,...,tk

k∏
j=2

φtj (Xtj ),

where θs· := {θs , θst , ..., θst2...tk} is a set of parameters and N(s) is
the set of neighbors of node s according to graph G .
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Mixed exponential Markov random fields: Joint

The corresponding joint distribution has the form:

P(X ; θ) = exp{
∑
s∈V

θsφs(Xs) +
∑
s∈V

∑
t∈N(s)

θstφs(Xs)φt(Xt)+

· · ·+
∑

t1,...,tk∈C
θt1,...,tk

k∏
j=1

φtj (Xtj ) +
∑
s∈V

Cs(Xs)− Φ(θ)},

where Φ(θ) is the log-normalization constant.
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Mixed exponential Markov random fields: Ising-Gaussian

P(Y ,Z ) ∝ exp
{ ∑

s∈VY

θys
σs

Ys +
∑
r∈VZ

θzr Zr +
∑

(s,t)∈EY

θyyst
σsσt

YsYt+

∑
(r ,q)∈EZ

θzzrqZrZq +
∑

(s,r)∈EYZ

θyzsr
σs

YsZr −
∑
s∈VY

Y 2
s

2σ2s

}
If Xs Bernoulli, the node-conditional has the form:

P(Xs |X\s) ∝ exp
{
θzr Zr +

∑
q∈N(r)Z

θzzrqZrZq +
∑

t∈N(r)Y

θyzrt
σt

ZrYt

}
If Xs Gaussian, the node-conditional has the form:

P(Xs |X\s) ∝ exp
{θys
σs

Ys +
∑

t∈N(s)Y

θyyst
σsσt

YsYt +
∑

r∈N(s)Z

θyzsr
σs

YsZr −
Y 2
s

2σ2s

}
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How to estimate mixed Markov random fields in a
principled way?
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Inverse covariance matrices and graph structure

1
2

3

4

⇐⇒


X1 X2 X3 X4

X1 3.45 0 0 3.18
X2 0 2.14 0 0.82
X3 0 0 3.21 1.05
X4 3.18 0.82 1.05 8.77



1
2

3

4

6⇐⇒


X1 X2 X3 X4

X1 3.45 5.12 0 3.18
X2 5.12 2.14 0.51 0.82
X3 0 0.51 3.21 1.05
X4 3.18 0.82 1.05 8.77





Generalized covariance matrices

1
2

3

4
6⇐⇒


X1 X2 X3 X4

X1 3.45 5.12 0 3.18
X2 5.12 2.14 0.51 0.82
X3 0 0.51 3.21 1.05
X4 3.18 0.82 1.05 8.77



1
2

3

4

⇐⇒



X1 X2 X3 X4 X1X2 . . .

X1 3.45 0 0 3.18 4.98 . . .
X2 0 2.14 0 0.82 1.15 . . .
X3 0 0 3.21 1.05 4.48 . . .
X4 3.18 0.82 1.05 8.77 4.37 . . .
X1X2 4.98 1.15 4.48 4.37 8.45 . . .
...

...
...

...
...

...
. . .



(Loh and Wainwright, 2013)



Generalized covariance matrices & nodewise regression

Corollary:
For any graph with maximal degree d , the inverse Γ of the
covariance matrix over the node s and all its candidate
neighborhoods up to size d is graph structured with respect to the
N(s). That is, Γ(s, t) = 0 whenever t 6∈ N(s).


Xs Xt1 Xt2 . . .

Xs 3.45 0 1.27 . . .
Xt1 0 2.14 0 . . .
Xt2 1.27 0 3.21 . . .
...

...
...

...
. . .





Generalized covariance matrices for mixed exponential
Markov random fields

1
2

3

4

⇐⇒



X1 X2 X3 X4 X1X2 . . .

X1 3.45 0 0 3.18 4.98 . . .
X2 0 2.14 0 0.82 1.15 . . .
X3 0 0 3.21 1.05 4.48 . . .
X4 3.18 0.82 1.05 8.77 4.37 . . .
X1X2 4.98 1.15 4.48 4.37 8.45 . . .
...

...
...

...
...

...
. . .





How to estimate mixed Markov random fields in a
principled way?

+

EstimationModeling



Nodewise estimation algorithm

1. Regress all nodes V\s on node Vs with a `1-penalty

1

2

3

1

2

3

1

2

3

2. Threshold parameters at τn =
√
d ||β̂||2

√
log p
n

3. Combine parameter estimates

β̂ =


X1 X2 X3

X1 NA 0 4.78
X2 0 NA 0.12
X3 5.11 0 NA





Simulation: Setup

Varied factors:

1. Sparsity: {.1, .2, .3}
2. Ratio n

p : exp{0, 1, 2, 3, 4, 5} ≈ {1, 3, 7, 20, 55, 148}
3. Degree of augmented interactions d : {1, 2, 3}
4. Different (mixed) graphs

4.1 Potts model with m = {2, 3, 4}
4.2 Ising-Gaussian
4.3 Ising-Exponential
4.4 Ising-Poisson



Results: Potts model (m=2) (Ising model)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

n/p

S
en

si
tiv

ity

1 3 7 20 55 148

●

●

●

●
● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

d = 1
d = 2
d = 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision

n/p
P

re
ci

si
on

1 3 7 20 55 148

●

●
● ●

● ●

●

● ● ● ● ●

●

● ● ● ●



Results: Potts model (m=2) (Ising model)
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Results: Potts model (m=3)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

n/p

S
en

si
tiv

ity

1 3 7 20 55 148

●

●

●

●

● ●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

d = 1
d = 2
d = 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision

n/p
P

re
ci

si
on

1 3 7 20 55 148

●

●

● ●

●
●

●

●
● ● ● ●

●

●

● ● ● ●



Results: Ising-Gaussian
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Results: Ising-Poisson
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Exploring Autism-dataset

I 27 Variables describing the life of individuals diagnosed with
Autism Spectrum Disorder (ASD) in the Netherlands
(N=3521)

I Variables: Workinghours, Type of Work, Type of housing,
Success, Satisfaction with Work, Satisfaction with treatment,
Satisfaction with social contacts, Satisfaction with
medication, Satisfaction with given advice, Satisfaction with
education, Satisfaction with Care, Openness about diagnosis,
Education, Number of social contacts, Physical problems,
Medications, Interests, Family members with autism, Number
of care units, IQ, Integration in Society, ...



Exploring Autism-dataset: Graph-visualization
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Exploring Autism-dataset: Centrality-measures

Betweenness Closeness Degree
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Age

Age diagnosis

Gender

Good Characteristics due to Autism

Happiness

Integration in Society

IQ

No of Care Units

No of Comorbidities

No of family members with autism

No of Interests

No of Medications

No of Physical Problems

No of Social Contacts

No of Treatments

No of unfinished Educations

Openness about Diagnosis

Satisfaction: Care

Satisfaction: Education

Satisfaction: Given advice

Satisfaction: Medication

Satisfaction: Social Contacts

Satisfaction: Treatment

Satisfaction: Work

Success self−rating

Type of Housing

Type of work

Workinghours

0 1 2 3 −1 0 1 2 −1 0 1 2



R-package mgm
Install:

library(devtools)
install_github("jmbh/mgm")
library(mgm)

Fit a mixed Markov random field:

> round(head(data_mixed2),4)[1:3,]
[,1] [,2] [,3] [,4] [,5]

[1,] 0.6680 1 11.4234 2 2
[2,] -0.7114 1 22.9344 1 1
[3,] 1.2265 0 34.4966 3 1

type <- c("g", "p", "e", "c", "c")
levs <- c(1,1,1,3,2)

set.seed(5)
fit <- mgmfit(data = data_example, type = type, lev = levs,

lambda.sel = "CV", folds = 10, gam = .25,
d = 2, rule.reg = "AND", rule.cat = "OR")

?mgmfit



R-package mgm: Output

Output:

> fit
$adj

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 0 0 0
[2,] 1 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 1
[5,] 0 0 0 1 0

$wadj
[,1] [,2] [,3] [,4] [,5]

[1,] 0.000000 0.177809 0 0.0000000 0.0000000
[2,] 0.177809 0.000000 0 0.0000000 0.0000000
[3,] 0.000000 0.000000 0 0.0000000 0.0000000
[4,] 0.000000 0.000000 0 0.0000000 0.7687597
[5,] 0.000000 0.000000 0 0.7687597 0.0000000

?mgmfit



R-package mgm: Visualize

Output:

library(qgraph)
qgraph(fit$wadj)

1

2

34

5



Summary

1. First ”principled” method to estimate mixed Markov random
fields

2. Performance measures: works in practical situations

3. R-package implementation: mgm

Contact:

jonashaslbeck@gmail.com
https://github.com/jmbh





Backup slides



Does proper modeling matter?
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1: Gender
2: IQ
3: Age diagnosis
4: Openness about Diagnosis
5: Success self−rating
6: Happiness
7: Integration in Society
8: No of family members with autism
9: No of Comorbidities
10: No of Physical Problems
11: No of Treatments
12: No of Medications
13: No of Care Units
14: Type of Housing
15: No of unfinished Educations
16: Type of work
17: Workinghours
18: No of Interests
19: No of Social Contacts
20: Good Characteristics due to Autism
21: Satisfaction: Given advice
22: Satisfaction: Treatment
23: Satisfaction: Medication
24: Satisfaction: Care
25: Satisfaction: Education
26: Satisfaction: Work
27: Satisfaction: Social Contacts
28: Age

All Gaussian



Ising-Gaussian: Rewrite conditional Gaussian (1)

P(Xs |X\s) ∝ exp
{θys
σs

Ys +
∑

t∈N(s)Y

θyyst
σsσt

YsYt +
∑

r∈N(s)Z

θyzsr
σs

YsZr −
Y 2
s

2σ2s

}
If we let σ = 1 and factor out Ys , we get:

P(Xs |X\s) ∝ exp
{
Ys(θys +

∑
t∈N(s)Y

θyyst Yt +
∑

r∈N(s)Z

θyzsr Zr )− Y 2
s

2

}



Ising-Gaussian: Rewrite conditional Gaussian (2)

Now, if we let µs = θys +
∑

t∈N(s)Y
θyyst Yt +

∑
r∈N(s)Z

θyzsr Zr , we
have

P(Xs |X\s) = exp
{
Xsµs +

X 2
s

2
− Φ(X\s)

}
,

where Φ(X\s) = log(
√

2πe−
µ2
s
2 ). Taking µ2s

2 out of the log
normalization constant, with basic algebra we arrive at the
well-known form of the univariate Gaussian distribution with unit
variance:

P(Xs |X\s) =
1√
2π

exp
{
− (Xs − µs)2

2

}



All results: Categorical

dat$cc2[1:18, ]
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All results: Mixed

dat$gauss[1:18, ]
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