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Network analysis is entering fields where network structures are unknown, such as psychology and the
educational sciences. A crucial step in the application of network models lies in the assessment of network
structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the
present paper, we present a method for assessing network structures from binary data. Although models for
binary data are infamous for their computational intractability, we present a computationally efficient
model for estimating network structures. The approach, which is based on Ising models as used in physics,
combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant
relationships between variables that define connections in a network. A validation study shows that this
method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our
proposed method to estimate the network of depression and anxiety symptoms from symptom scores of
1108 subjects. Possible extensions of the model are discussed.

R
esearch on complex networks is growing and statistical possibilities to analyse network structures have
been developed to great success in the past decade1–5. Networks are studied in many different scientific
disciplines: from physics and mathematics to the social sciences and biology. Examples of topics that

have recently been subjected to network approaches include intelligence, psychopathology, and attitudes6–10.
Taking psychopathology as an example, nodes (elements) in a depression network may involve symptoms,
whereas edges (connections) indicate to what extent symptoms influence each other. The structure of such a
network, however, is unknown due to the absence of a sufficiently formalised theory of depression.
Consequently, the network structure has to be extracted from information in data. The challenging question
is how to extract it.

Methods that are currently used to discover network structures in the field of psychology are based on
correlations, partial correlations, and patterns of conditional independencies7,11–13. Although such techniques
are useful to get a first impression of the data, they suffer from a number of drawbacks. Correlations and partial
correlations, for example, require assumptions of linearity and normality, which are rarely satisfied in psychology,
and necessarily false for binary data. Algorithms like the PC-algorithm14,15, which can be used to search for causal
structure, often assume that networks are directed and acyclic, which is unlikely in many psychological cases.
Finally, in any of these methods, researchers rely on arbitrary cutoffs to determine whether a network connection
is present or not. A common way to determine such cutoff-values is through null-hypothesis testing, which often
depends on the arbitrary level of significance of a 5 .05. In the case of network analysis, however, one often has to
execute a considerable number of significance tests. One can either ignore this, which will lead to a multiple
testing problem, or deal with it through Bonferonni corrections, (local) false discovery rate, or other methods16–18,
which will lead to a loss of power.

For continuous data with multivariate Gaussian distributed observations, the inverse covariance matrix is a
representation of an undirected network (also called a Markov Random Field19,20). A zero entry in the inverse
covariance matrix then corresponds to the presence of conditional independence between the relevant variables,
given the other variables21. To find the simplest model that explains the data as adequately as possible according to
the principle of parsimony, different strategies are investigated to find a sparse approximation of the inverse
covariance matrix. Such a sparse approximation can be obtained by imposing an ,1-penalty (lasso) on the
estimation of the inverse covariance matrix13,22,23. The lasso ensures shrinkage of partial correlations and puts
others exactly to zero24. A different take involves estimating the neighborhood of each variable individually, as in
standard regression with an , 1-penalty25, instead of using the inverse covariance matrix. This is an approximation
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to the ,1-penalised inverse covariance matrix. This Gaussian
approximation method is an interesting alternative: it is computa-
tionally efficient and asymptotically consistent25.

In psychology and educational sciences, variables are often not
Gaussian but discrete. Although discrete Markov Random Fields
are infamous for their computational intractability, we propose a
binary equivalent of the Gaussian approximation method that
involves regressions and is computationally efficient26. This method
for binary data, which we describe in more detail in the Methods
section, is based on the Ising model19,27. In this model, variables can
be in either of two states, and interactions are at most pairwise. The
model contains two node-specific parameters: the interaction para-
meter bjk, which represents the strength of the interaction between
variable j and k, and the node parameter tj, which represents the
autonomous disposition of the variable to take the value one, regard-
less of neighbouring variables. Put simply, the proposed procedure in
our model estimates these parameters with logistic regressions: itera-
tively, one variable is regressed on all others. However, to obtain
sparsity, an ,1-penalty is imposed on the regression coefficients.
The level of shrinkage depends on the penalty parameter of the lasso.
The penalty parameter has to be selected carefully, otherwise the
lasso will not lead to the true underlying network – the data generat-
ing network25. The extended Bayesian Information Criterion28

(EBIC) has been shown to lead to the true network when sample size
grows and results in a moderately good positive selection rate, but
performs distinctly better than other measures in having a low false
positive rate29.

Using this approach, we have developed a coherent methodology
that we call eLasso. The methodology is implemented in the freely
available R package IsingFit (http://cran.r-project.org/web/packages/
IsingFit/IsingFit.pdf). Using simulated weighted networks, the pre-
sent paper studies the performance of this procedure by investigating
to what extent the methodology succeeds in estimating networks
from binary data. We simulate data from different network archi-
tectures (i.e., true networks; see Figures 1a and 1b), and then use the
resulting data as input for eLasso. The network architectures used in
this study involve random, scale-free, and small word networks30–32.
In addition, we varied the size of the networks by including condi-
tions with 10, 20, 30, and 100 nodes, and involve three levels of
connectivity (low, medium, and high). Finally, we varied the sample
size between 100, 500, 1000, and 2000 observations. After applying
eLasso, we compare the estimated networks (Figure 1c) to the true
networks. We show that eLasso reliably estimates network structures,
and demonstrate the utility of our method by applying it to psycho-
pathology data.

Results
Validation study. The estimated networks show high concordance
with the true networks used to generate the data (Figure 2). Average
correlations between true and estimated coefficients are high in all
conditions with 500 observations or more (M 5 .883, sd 5 .158, see
Table 1). In the smallest sample size condition involving only 100
observations, the estimated networks seems to deviate somewhat
more from the true networks, but even in this case the most
important connections are recovered and the average correlation
between generating and estimated networks remains substantial
(M 5 .556, sd 5 .155). Thus, the overall performance of eLasso is
adequate.

More detailed information about eLasso’s performance is given by
sensitivity and specificity. Sensitivity expresses the proportion of true
connections which are correctly estimated as present, and is also
known as the true positive rate. Specificity corresponds to the pro-
portion of absent connections which are correctly estimated as zero,
and is also known as the true negative rate. It has been shown that
sensitivity and specificity tend to 1 when sample sizes are large
enough29,33; the question is for which sample sizes we come close.

Overall, specificity is very close to one across all conditions (M 5

.990, sd 5 .014) with somewhat lower specificity scores for the largest
and most dense random networks (see Table 2). Overall, sensitivity is
lower (M 5 .463, sd 5 .238) but becomes moderate for conditions
involving more than 100 observations (M 5 .568, sd 5 .171). The
reason that sensitivity is lower than specificity lies in the use of the
penalty function (lasso); to manage the size of the computational
problem, eLasso tends to suppress small but nonzero connections
towards zero. Thus, lower sensitivity values mainly reflect the fact
that very weak connections are set to zero; however, the important
connections are almost aways correctly identified. In addition, the
specificity results indicate that there are very few false positives in the
estimated networks; thus, eLasso handles the multiple testing prob-
lem very well. Figure 1 nicely illustrates these results: almost all
estimated connections in Figure 1c are also present in the generating
network depicted in Figure 1b (high specificity), but weaker connec-
tions in the original network are underestimated (low sensitivity).

The above pattern of results, involving adequate network recovery
with high specificity and moderately high sensitivity, is represent-
ative for almost all simulated conditions. The only exception to this
rule results when the largest random and scale-free networks (100
nodes) are coupled with the highest level of connectivity. In these
cases, the estimated coefficients show poor correlations with the
coefficients of the generating networks, even for conditions involving
2000 observations (.222 and .681, respectively). For random net-
works, the reason for this is that the number of connections increases
as the level of connectivity increases. For scale-free networks, the
number of connections does not increase with increasing level of
connectivity, but it does result in a peculiar arrangement of network
connections, in which one node comes to have disproportionately
many connections. Because eLasso penalises variables for having
more connections, larger sample sizes are needed to overcome this
penalty for these types of networks.

Although the lower level of sensitivity is partly inherent in the
chosen method to handle the computational size of the problem
and the solution to multiple testing through penalisation, it might
be desirable in some cases to have a higher sensitivity at the expense
of specificity. In eLasso, sensitivity can generally be increased in two
ways. First, eLasso identifies the set of neighbours for each node by
computing the EBIC28 (extended BIC). EBIC penalises solutions that
involve more variables and more neighbours. This means that if the
number of variables is high, EBIC tends to favour solutions that
assign fewer neighbours to any given node. In this procedure, a
hyperparameter called c determines the strength of the extra penalty
on the number of neighbours29,33. In our main simulation study, we
used c 5 .25. When c 5 0, no extra penalty is given for the number of
neighbours, which results in a greater number of estimated connec-
tions. Second, we applied the so-called AND-rule to determine the
final edge set. The AND-rule requires both regression coefficients bjk

and bkj (from the ,1-regularised logistic regression of Xj on Xk and of
Xk on Xj) to be nonzero. Alternatively, the OR-rule can be applied.
The OR-rule requires only one of bjk and bkj to be nonzero, which
also results in more estimated connections.

By applying the OR-rule and c 5 0, correlations between true and
estimated coefficients are even higher in all conditions with 500
observations and more (M 5 .895, sd 5 .156; Table 1). Sensitivity
also improved across all conditions (M 5 .584, sd 5 .221; Table 2).
With more than 100 observations, average sensitivity is higher (M 5

.682, sd 5 .153). Applying the OR-rule and setting c 5 0 thus indeed
increases the sensitivity of eLasso. As expected, this gain in sensitivity
results in a loss of specificity; however, this loss is slight, as specificity
remains high across all conditions (M 5 .956, sd 5 .039; Table 2).

Finally, it should be noted that with sparse networks, specificity
partly takes on high values due to the low base rate of connections,
since it is based on the number of true negatives. Therefore, we also
investigated another measure, the so-called F1 score, that is not based
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on true negatives but on true positives, false positives and false nega-
tives34; as such, it is independent of the base rate. For most conditions,
the trends in the results are comparable. However, for larger and/or
more dense random networks, the proportion of estimated connec-
tions that are not present in the true network is larger. More details
about these results are provided in the online Supplementary
Information.

To conclude, eLasso proves to be an adequate method to estimate
networks from binary data. The validation study indicates that, with
sample sizes of 500, 1000, and 2000, the estimated network strongly
resembles the true network (high correlations). Specificity is uni-
formly high across conditions, which means there is a near absence
of false positives among estimated network connections. Sensitivity
is moderately high, and increases with sample size. For the most part,

sensitivity is lowered because of weak connections that are incor-
rectly set to zero; in these cases, however, eLasso still adequately picks
up the most important connectivity structures. For larger networks
with either higher connectivity or a higher level of preferential
attachment, sensitivity becomes lower; in these cases, more observa-
tions are needed.

Application to real data. To demonstrate the utility of eLasso, we
apply it to a large data set (N 5 1108) containing measurements of
depression of healthy controls and patients with a current or history
of depressive disorder. We used 27 items of the Inventory of
Depressive Symptomatology35, which was administered in the
Netherlands Study of Depression and Anxiety36 (NESDA). Using
eLasso, we investigate how individual depression symptoms are

Figure 1 | Examples of networks with 30 nodes in the simulation study. (a) Generated networks. From left to right: random network (probability of

an extra connection is 0.1), scale-free network (power of preferential attachment is 1) and small world network (rewiring probability is 0.1).

(b) Weighted versions of (a) that are used to generate data (true networks). (c) Estimated networks.
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related, as this may reveal which symptoms are important in the
depression network; in turn, this information may be used to
identify targets for intervention in clinical practice.

The eLasso network for these data is given in Figure 3. To analyse
the depression network, we focus on the most prominent properties
of nodes in a network: node strength, betweenness, and clustering
coefficient (Figure 4). Node strength is a measure of the number of
connections a node has, weighted by the eLasso coefficients37.
Betweenness measures how often a node lies on the shortest path
between every combination of two other nodes, indicating how
important the node is in the flow of information through the net-
work38,39. The local clustering coefficient is a measure of the degree to
which nodes tend to cluster together. It is defined as how often a node
forms a triangle with its direct neighbours, proportional to the num-
ber of potential triangles the relevant node can form with its direct
neighbours38. These measures are indicative of the potential spread-
ing of activity through the network. As activated symptoms can
activate other symptoms, a more densely connected network facil-
itates symptom activation. Moreover, we inspect the community
structure of the networks derived from the empirical data, to identify
clusters of symptoms that are especially highly connected.

Figure 3 reveals that most cognitive depressive symptoms (e.g.,
‘‘feeling sad’’ (sad), ‘‘feeling irritable’’ (irr), ‘‘quality of mood’’ (qmo),
‘‘response of your mood to good or desired events’’ (rmo), ‘‘concen-
tration problems’’ (con), and ‘‘self criticism and blame’’ (sel)) seem to
be clustered together. These symptoms also seem to score moderate
to high on at least two out of three centrality measures (Figure 4). For
example, ‘‘rmo’’ has a moderate strength and a very high clustering
coefficient, whereas it has a low betweenness. This indicates that
activation in the network does not easily affect response of mood

to positive events (low betweenness), but that, if the symptom is
activated, the cluster will tend to stay infected because of the high
interconnectivity (high clustering coefficient). Another interesting
example is ‘‘energy level’’ (ene), which has a high node strength
and betweenness, but a moderate clustering coefficient. Apparently,
energy level has many and/or strong connections (high strength) and
lies on many paths between symptoms (high betweenness), whereas it
is not part of a strongly clustered group of symptoms (moderate
clustering coefficient). This symptom is probably more important
in passing information through the network, or between other clus-
ters, and might, therefore, be an interesting target for intervention.

As opposed to cognitive depressive symptoms, most anxiety and
somatic symptoms (e.g., ‘‘panic/phobic symptoms’’ (pan), ‘‘aches
and pains’’ (ach), ‘‘psychomotor agitation’’ (agi)) feature low scores
on at least two centrality measures. Apparently, most anxiety and
somatic symptoms either are less easily affected by other activated
symptoms, do not tend to stay infected because of low interconnec-
tivity (low clustering coefficient), or are less important for transfer-
ring information through the network (low betweenness). This is to
be expected, since participants with a current or history of anxiety
disorder are excluded from our sample. The item ‘‘feeling anxious’’
(anx), however, seems to be an important exception; feeling anxious
does have a high node strength, a relatively high betweenness, and a
moderate clustering coefficient. Apparently, feeling anxious does
play an important role in our sample of depressive and healthy
persons: it can be activated very easily, since a lot of information
flows through it (high betweenness), and, in turn, it can activate
many other symptoms because it has many neighbours (high node
strength, moderate clustering). The role of feeling anxious in our
network is in line with high comorbidity levels of anxiety and

Figure 2 | Mean correlations (vertical axes) of the upper triangles of the weighted adjacency matrices of true and estimated networks of 100 simulations
with random, scale-free, and small world networks for sample sizes ssize 5 100, 500, 1000, and 2000, with number of nodes nnodes 5 10, 20, 30, and 100.
We used three levels of connectivity (random networks: probability of an extra connection Pconn 5 .1, .2, and .3; scale-free networks: power of preferential

attachment Pattach 5 1, 2, and 3; small world networks: rewiring probability of Prewire 5 .1, .5, and 1). For the condition with 100 nodes, we used

different levels of connectivity for random and scale-free networks in order to obtain more realistic networks (random networks: Pconn 5 .05, .1, and .15;

scale-free networks: Pattach 5 1, 1.25, and 1.5).
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depressive disorders found in the literature40–42. Still, feeling anxious
is not a symptom of depression according to current classifications,
even though recent adaptations in DSM-5 propose an anxiety speci-
fier for patients with mood disorders43. In line with this, our data
suggest that people with a depressive disorder experience depressive
symptoms often also feel anxious, although they may not have an
anxiety disorder. This supports criticisms of the boundaries between
MDD and generalised anxiety, which have been argued to be
artificial8.

Another interesting feature of networks lies in their organization
in community structures: clusters of nodes that are relatively highly
connected. In the present data, the Walktrap algorithm44,45 reveals a
structure involving six communities (see Figure 5). The purple clus-
ter contains mostly negative mood symptoms, such as ‘‘feeling sad’’
(sad) and ‘‘feeling irritable’’ (irr); the pink cluster contains predomi-
nantly positive mood symptoms, such as ‘‘capacity of pleasure’’ (ple)
and ‘‘general interest’’ (int); the green cluster is related to anxiety and
somatic symptoms, such as ‘‘anxiety’’ (anx) and ‘‘aches and pains’’
(ach); the blue and yellow clusters represent sleeping problems.

Discussion
eLasso is a computationally efficient method to estimate weighted,
undirected networks from binary data. The present research indi-
cates that the methodology performs well in situations that are rep-
resentative for psychology and psychiatry, with respect to the
number of available observations and variables. Network architec-
tures were adequately recovered across simulation conditions and,
insofar as errors were made, they concerned the suppression of very
weak edges to zero. Thus, eLasso is a viable methodology to estimate
network structure in typical research settings in psychology and
psychiatry and fills the gap in estimating network structures from
non-Gaussian data.

Simulations indicated that the edges in the estimated network are
nearly always trustworthy: the probability of including an edge, that
is not present in the generating network, is very small even for small
sample sizes. Due to the use of the lasso, more regression coefficients
are set to zero in small sample sizes, which results in a more conser-
vative estimation of network structure. For larger networks that are
densely connected or that feature one node with a disproportionate
number of connections, more observations are needed to yield a good
estimate of the network. As the sample size grows, more and more
true edges are estimated, in line with the asymptotic consistency of
the method.

The model we presented may be extended from its current dicho-
tomous nature to accommodate ordinal data, which are also preval-
ent in psychiatric research. For multinomial data, for example, the
Potts model could be used46. This model is a generalisation of the
Ising model with two states to a model with more than two states.
Another straightforward extension of the model involves general-
isation to binary time series data (by conditioning on the previous
time point to render observations independent).

Methods
In this section we briefly explain the newly implemented method eLasso, provide the
algorithm, describe the validation study and the real data we used to show the utility of
eLasso.

eLasso. Let x 5 (x1, x2, …, xn) be a configuration where xi 5 0 or 1. The conditional
probability of Xj given all other nodes X\j according to the Ising model26,47 is given by
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Table 2 | Sensitivity and specificity, as a measure of performance of eLasso. Data is simulated under various conditions (ssize, nnodes,
connectedness (p (probability of a connection), pa (preferential attachment), pr (probability of rewiring)) when the AND-rule and c 5 .25
is applied. For networks with 100 nodes, deviating levels of connectedness are displayed between brackets. Results of applying eLasso
with the OR-rule and c 5 0 are displayed between brackets

ssize nnodes

Random Scale-free Small world

p 5 .1(.05) p 5 .2(.10) p 5 .3(.15) pa 5 1 pa 5 2(1.25) pa 5 3(1.5) pr 5 .1 pr 5 .5 pr 5 1

100 10 SEN 0.256
(0.348)

0.241
(0.395)

0.229
(0.409)

0.221
(0.363)

0.184
(0.380)

0.172
(0.397)

0.253
(0.458)

0.257
(0.412)

0.260
(0.434)

SPE 0.997
(0.968)

0.996
(0.950)

0.991
(0.929)

0.997
(0.953)

0.994
(0.958)

0.997
(0.969)

0.989
(0.893)

0.988
(0.912)

0.987
(0.907)

20 SEN 0.183
(0.324)

0.166
(0.339)

0.173
(0.339)

0.168
(0.315)

0.104
(0.288)

0.074
(0.305)

0.188
(0.359)

0.189
(0.349)

0.168
(0.342)

SPE 0.998
(0.976)

0.997
(0.961)

0.991
(0.933)

0.998
(0.978)

0.998
(0.986)

0.999
(0.987)

0.997
(0.960)

0.995
(0.962)

0.997
(0.958)

30 SEN 0.146
(0.295)

0.128
(0.307)

0.118
(0.242)

0.146
(0.269)

0.064
(0.186)

0.044
(0.126)

0.160
(0.328)

0.147
(0.287)

0.144
(0.305)

SPE 0.999
(0.982)

0.996
(0.956)

0.982
(0.922)

0.999
(0.986)

0.999
(0.99)

0.999
(0.991)

0.999
(0.976)

0.999
(0.978)

0.999
(0.976)

100 SEN 0.080
(0.186)

0.056
(0.132)

0.031
(0.134)

0.081
(0.185)

0.067
(0.139)

0.040
(0.085)

0.121
(0.238)

0.087
(0.205)

0.092
(0.195)

SPE 1.000
(0.995)

0.990
(0.962)

0.983
(0.904)

1.000
(0.997)

1.0000
(0.997)

1.000
(0.998)

1.000
(0.995)

1.000
(0.995)

1.000
(0.995)

500 10 SEN 0.550
(0.649)

0.551
(0.672)

0.617
(0.704)

0.561
(0.687)

0.501
(0.713)

0.499
(0.734)

0.650
(0.726)

0.628
(0.765)

0.623
(0.757)

SPE 0.998
(0.975)

0.993
(0.945)

0.982
(0.922)

0.996
(0.957)

0.997
(0.958)

0.995
(0.966)

0.953
(0.879)

0.964
(0.869)

0.964
(0.862)

20 SEN 0.539
(0.633)

0.537
(0.678)

0.527
(0.643)

0.492
(0.613)

0.364
(0.619)

0.302
(0.557)

0.569
(0.691)

0.538
(0.665)

0.538
(0.676)

SPE 0.998
(0.976)

0.989
(0.944)

0.971
(0.904)

0.998
(0.980)

0.999
(0.985)

0.999
(0.990)

0.992
(0.945)

0.989
(0.945)

0.990
(0.945)

30 SEN 0.508
(0.637)

0.498
(0.620)

0.298
(0.470)

0.461
(0.598)

0.260
(0.465)

0.247
(0.391)

0.536
(0.662)

0.505
(0.639)

0.504
(0.628)

SPE 0.997
(0.977)

0.984
(0.939)

0.964
(0.879)

0.999
(0.985)

0.999
(0.992)

0.999
(0.994)

0.996
(0.969)

0.996
(0.965)

0.995
(0.965)

100 SEN 0.416
(0.537)

0.189
(0.336)

0.091
(0.164)

0.372
(0.498)

0.311
(0.420)

0.174
(0.289)

0.481
(0.600)

0.433
(0.554)

0.428
(0.558)

SPE 0.999
(0.989)

0.982
(0.932)

0.964
(0.913)

1.000
(0.996)

1.000
(0.997)

1.000
(0.998)

0.999
(0.992)

0.999
(0.992)

0.999
(0.992)

1000 10 SEN 0.726
(0.794)

0.671
(0.752)

0.710
(0.783)

0.662
(0.756)

0.620
(0.781)

0.622
(0.818)

0.738
(0.814)

0.751
(0.814)

0.758
(0.820)

SPE 0.998
(0.974)

0.993
(0.950)

0.979
(0.921)

0.994
(0.952)

0.992
(0.966)

0.995
(0.974)

0.954
(0.862)

0.957
(0.867)

0.956
(0.869)

20 SEN 0.666
(0.752)

0.665
(0.784)

0.630
(0.770)

0.599
(0.736)

0.533
(0.699)

0.431
(0.709)

0.680
(0.776)

0.664
(0.764)

0.681
(0.772)

SPE 0.998
(0.976)

0.987
(0.936)

0.968
(0.886)

0.998
(0.977)

0.999
(0.984)

0.999
(0.987)

0.991
(0.946)

0.990
(0.938)

0.988
(0.938)

30 SEN 0.658
(0.736)

0.603
(0.710)

0.420
(0.583)

0.578
(0.699)

0.389
(0.566)

0.340
(0.545)

0.669
(0.752)

0.663
(0.738)

0.661
(0.740)

SPE 0.996
(0.974)

0.982
(0.931)

0.956
(0.870)

0.999
(0.985)

0.999
(0.991)

0.999
(0.993)

0.995
(0.966)

0.993
(0.963)

0.994
(0.961)

100 SEN 0.572
(0.671)

0.286
(0.427)

0.125
(0.199)

0.519
(0.624)

0.409
(0.544)

0.284
(0.351)

0.636
(0.713)

0.579
(0.679)

0.593
(0.680)

SPE 0.999
(0.987)

0.979
(0.919)

0.957
(0.908)

1.000
(0.996)

1.000
(0.997)

1.000
(0.998)

0.999
(0.991)

0.999
(0.991)

0.999
(0.991)

2000 10 SEN 0.711
(0.808)

0.775
(0.830)

0.810
(0.842)

0.746
(0.842)

0.728
(0.870)

0.712
(0.891)

0.821
(0.880)

0.829
(0.864)

0.822
(0.866)

SPE 0.996
(0.986)

0.994
(0.951)

0.983
(0.921)

0.996
(0.955)

0.995
(0.967)

0.993
(0.968)

0.956
(0.871)

0.960
(0.873)

0.946
(0.846)

20 SEN 0.741
(0.804)

0.770
(0.838)

0.754
(0.840)

0.691
(0.805)

0.624
(0.769)

0.566
(0.754)

0.793
(0.837)

0.769
(0.836)

0.762
(0.844)

SPE 0.997
(0.977)

0.987
(0.942)

0.962
(0.876)

0.998
(0.977)

0.998
(0.984)

0.999
(0.988)

0.988
(0.942)

0.987
(0.936)

0.986
(0.932)

30 SEN 0.756
(0.808)

0.740
(0.808)

0.529
(0.656)

0.698
(0.807)

0.483
(0.712)

0.430
(0.612)

0.772
(0.837)

0.762
(0.818)

0.754
(0.825)

SPE 0.996
(0.974)

0.974
(0.917)

0.944
(0.851)

0.999
(0.984)

0.999
(0.990)

0.999
(0.993)

0.994
(0.963)

0.992
(0.961)

0.993
(0.959)

100 SEN 0.688
(0.767)

0.385
(0.539)

0.160
(0.250)

0.648
(0.736)

0.548
(0.607)

0.349
(0.398)

0.738
(0.793)

0.708
(0.776)

0.703
(0.777)

SPE 0.998
(0.986)

0.973
(0.906)

0.954
(0.895)

1.000
(0.996)

1.000
(0.997)

1.000
(0.998)

0.999
(0.991)

0.999
(0.990)

0.999
(0.990)
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Figure 3 | Application of eLasso to real data. The resulting network structure of a group of healthy controls and people with a current or history of

depressive disorder (N 5 1108). Cognitive symptoms are displayed as # and thicker edges (connections) represent stronger associations.

Figure 4 | Three centrality measures of the nodes in the network based on real data. From left to right: node strength, betweenness, and clustering

coefficient. ‘‘Hypersomnia’’ (hyp) has no clustering coefficient, since it has only one neighbour.
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In practice, the graph structure of psychological constructs is unknown. Therefore,
the estimation of the unknown graph structure and the corresponding parameters is
of central importance. By viewing Xj as the response variable and all other variables X\j

as the predictors, we may fit a logistic regression function to investigate which nodes
are part of the neighbourhood of the response variable. The intercept tj of the
regression equation is the threshold of the variable, while the slope bjk of the
regression equation is the connection strength between the relevant nodes. In order to
perform the logistic regression, we need multiple independent observations of the
variables.

To establish which of the variables in the data are neighbours of a given variable,
and which are not, we used ,1–regularised logistic regression25,26. This technique is
commonly called the lasso (least absolute shrinkage and selection operator) and
optimises neighbourhood selection in a computationally efficient way, by optimising
the convex function

Ĥr
j ~ arg min Hj {xij

: tjz
X
k[V\j

bjkxik

0
@

1
A

8<
:

z log 1z exp tjz
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��� ���
9=
;,

ð2Þ

in which i represents the independent observations {1, 2, .., n}, Ĥr
j contains all bjk and

tj parameters, and r is the penalty parameter. The final term with r ensures shrinkage
of the regression coefficients24,26. Parameter tj can be interpreted as the tendency of
the variable to take the value 1, regardless of its neighbours. Parameter bjk represents
the interaction strength between j and k.

The optimisation procedure is applied to each variable in turn with all other
variables as predictors. To this end, the R package glmnet can be used48. The glmnet
package uses a range of maximal 100 penalty parameter values. The result is a list of
100 possible neighbourhood sets, some of which may be the same. To choose the best
set of neighbours, we used the EBIC28 (extended Bayesian Information Criterion).
The EBIC is represented as

BICc jð Þ~{2‘ ĤJ

� �
z Jj j: log nð Þz2c Jj j: log p{1ð Þ, ð3Þ

in which ‘ Ĥj

� �
is the log likelihood (see below), jJj is the number of neighbours

selected by logistic regression at a certain penalty parameter r, n is the number of
observations, p 2 1 is the number of covariates (predictors), and c is a hyperpara-
meter, determining the strength of prior information on the size of the model space33.
The EBIC has been shown to be consistent for model selection and to performs best
with hyperparameter c 5 0.25 for the Ising model29. The model with the set of
neighbours J that has the lowest EBIC is selected. From equation (1), it follows that the
log likelihood of the conditional probability of Xj given its neighbours Xne(j) over all
observations is

‘ Ĥj
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At this stage, we have the regression coefficients of the best set of neighbours for every
variable; i.e., we have both bjk and bkj and have to decide whether there is an edge
between nodes j and k or not. Two rules can be applied to make the decision: the AND
rule, where an edge is present if both estimates are nonzero, and the OR rule, where an
edge is present if at least one of the estimates is nonzero25,26.

Although we do have the final edge set by applying one of the rules, note that for
any two variables j and k, we get two results: the result of the regression of j on k (bjk),
and the result of the regression of k on j (bkj). To obtain an undirected graph, the
weight of the edge between nodes j and k, vjk, is defined as the mean of both regression
coefficients bjk and bkj. All steps of the described method are summarised in the
algorithm below and is incorporated in R package IsingFit (http://cran.r-project.org/
web/packages/IsingFit/IsingFit.pdf).

Input data set X for p variables and n subjects
Output (weighted) edge set for all pairs Xj and Xk

1. Initialise: Select (randomly) one variable from the set of variables. This is the
dependent variable.

a. Perform ,1-regularised logistic regression on all other variables (glmnet
uses 100 values of penalty parameter r).

b. Compute the EBIC for r (i.e., each set of neighbours).
c. Identify the set of neighbours that yield the lowest EBIC.
d. Collect the resulting regression parameters in matrix H with t on the diag-

onal and b on the off-diagonal.
e. Repeat steps a through d for all p variables.

2. Determine the final edge set by applying the AND rule: if both regression
coefficients bjk and bkj in H are nonzero, then there is an edge between nodes
j and k.

3. Average the weights of the regression coefficients bjk and bkj. Define H* as the
averaged weighted adjacency matrix with thresholds t on the diagonal. This is
now a symmetric matrix.

4. Create a graph corresponding to the off-diagonal elements of the averaged
weighted adjacency matrix H*. This can be done with qgraph in R49.

Validation study. We generated data from the three most popular types of network
architectures: random networks, scale-free networks, and small world (clustered)
networks30–32. Figure 1a shows illustrative examples of each type of networks.
Network sizes were chosen to be comparable to the most common number of items in
symptom checklists (10, 20, and 30 nodes), but also large networks were included (100
nodes). The level of connectivity of the networks was chosen to generate sparse
networks. For this reason, in case of random networks, the probability of a connection
(Pconn) between two nodes was set to 0.1, 0.2, and 0.3. For small world networks, the
neighbourhood was set to 2, and for scale-free networks only one edge is added per
node at each iteration in the graph generating process. To obtain a wide variety of well
known graph structures, the rewiring probability (Prewire) in small world networks
was set to 0.1, 0.5 and 1, and the power of preferential attachment (Pattach) in scale-free
networks was set to 1, 2 and 3. For the condition with 100 nodes, we used different
levels of connectivity for random and scale-free networks (random networks: Pconn 5

.05, .1, and .15; scale-free networks: Pattach 5 1, 1.25, and 1.5). Otherwise, nodes will
have too many connections.

The generated networks are binary: all connections have weight 1 or 0. To create
weighted networks, positive weights were assigned from squaring values from a
normal distribution with a mean of 0 and a standard deviation of 1 to obtain weights
in a realistic range. Examples of resulting weighted networks are displayed in
Figure 1b. Besides weights, thresholds of the nodes are added. To prevent nodes with
many connections to be continuously activated and consequently having no variance,
thresholds were generated from the normal distribution between zero and minus the
degree of a node.

From the weighted networks with thresholds, data was generated according to the
Ising model by drawing samples using the Metropolis-Hastings algorithm, imple-
mented in R using the IsingSampler package50–52. Four sample size conditions were
chosen that are realistic in psychology and psychiatry: 100, 500, 1000, and 2000. The
generated data were used to estimate networks with eLasso. Examples of the resulting
estimated networks are displayed in Figure 1c.

This setup led to a 3 3 4 3 3 3 4 quasi-factorial design, with the factors network
type (random, small world, scale-free), level of connectedness, network size (10, 20,
30, 100), and sample size (100, 500, 1000, 2000). Thus, the total simulation study
involved 144 conditions. Each of these conditions was replicated 100 times. For each
condition, the mean correlation between data generating and estimated parameters,
the mean sensitivity, and the mean specificity is computed. These served as outcome
measures, indicating the quality of network recovery. Sensitivity, or the true positive
rate, is defined as SEN 5 TP/(TP 1 FN), in which TP is the number of true positives
and FN is the number of false negatives. Specificity, or the true negative rate, is defined
as SPE 5 TN/(TN 1 FP), in which TN is the number of true negatives and FP is the
number of false positives. Note that, in order to compute sensitivity and specificity,

Figure 5 | Community structure of the network based on real data,
detected by the Walktrap algorithm44,45.
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the off-diagonal elements of the weighted adjacency matrix H* (bjk), have to be
dichotomised.

Since specificity naturally takes on high values for sparse networks, also the F1
score is computed. For more details about the F1 score and the results, see
Supplementary Information online.

Data description. We used data from the Netherlands Study of Depression and
Anxiety36 (NESDA). This is an ongoing cohort study, designed to examine the long-
term course and consequences of major depression and generalised anxiety disorder
in the adult population (aged 18–65 years). At the baseline assessment in 2004, 2981
persons were included. Participants consist of a healthy control group, people with a
history of depressive or anxiety disorder and people with current depressive and/or
anxiety disorder.

To demonstrate eLasso, we selected individuals from NESDA with a current or
history of depressive disorder and healthy controls. To this end, we excluded everyone
with a current or history of anxiety disorder. The resulting data set contains 1108
participants. To construct a network we used 27 items of the self-report Inventory of
Depressive Symptomatology35 that relates to symptoms in the week prior to assess-
ment (IDS).

Data were dichotomised in order to allow the application of the Ising model.
Therefore, the four response categories of the IDS items were recoded into 0 and 1.
The first response category of each item indicates the absence of the symptom. In the
case of ‘‘feeling sad’’, the first answering category is ‘‘I do not feel sad’’. This option is
recoded to 0, since it indicates the absence of the symptom. The other three options
(‘‘I feel sad less than half the time’’, ‘‘I feel sad more than half the time’’, and ‘‘I feel sad
nearly all of the time’’) are recoded to 1, indicating the presence of the symptom to
some extent. Other items are recoded similarly.

Analysing the dichotomised data with our method and visualising the results with
the qgraph package for R49, results in the network in Figure 3. The layout of the graph
is based on the Fruchterman-Reingold algorithm, which iteratively computes the
optimal layout so that nodes with stronger and/or more connections are placed closer
to each other53. This network conceptualisation of depressive symptomatology might
give new insights in issues that are still unexplained in psychology.
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