Challenges in characterizing psychopathologies as unhealthy dynamic systems

Conference on Complex Systems 2018 Thessaloniki

Oisín Ryan¹ & Jonas Haslbeck²

¹Department of Methodology and Statistics, Utrecht University ²Psychological Methods, University of Amsterdam

Psychological Disorders as Dynamic Systems

What's the appeal?

What's the appeal?

- ► Focus on causal interactions between variables/nodes
- ► Characterise structure of interactions that lead to pathology

Why a complex dynamical system?

Potentially promising mapping between complex systems concepts and psychological theories

- Bi-stable system
 - Disorder vs no-disorder
- Hysteresis
 - Disorder triggered by adverse life-events

Figure: Wichers et al 2018

Theory: Symptom Networks

Mental disorders arise from direct interactions betweeen symptoms

- Unhealthy state: symptoms activated
 - Consistent with medical diagnosis

- People prone to disorder have different network structures
 - Move more easily/frequently from healthy to unhealthy state

Figure: Borsboom 2017

Computational Model for Symptom Networks

Ising Model

- Simple proxy model of pairwise interactions
- Positive Manifold
 - Symptoms "mutually activating"
 - ► (0,1) coding: symptoms not "mutually disactivating"

Computational Model for Symptom Networks

Ising Model

- Simple proxy model of pairwise interactions
- Positive Manifold
 - Symptoms "mutually activating"
 - ► (0,1) coding: symptoms not "mutually disactivating"
- Density → marginal probability of "unhealthy" state
- Pathology as a function of network topology

Empirical Network Models

- Dataset on psychological constructs related to some pathology
 - Self-report questionnaire
 - Cross-sectional / time-series
 - Unhealthy vs healthy controls

Empirical Network Models

- Dataset on psychological constructs related to some pathology
 - ► Self-report questionnaire
 - Cross-sectional / time-series
 - Unhealthy vs healthy controls
- Fit a linear model to the data
 - PMRF or VAR

$$P(\mathbf{Y}_{j} = 1 | \mathbf{Y}_{\setminus j}) \Rightarrow \exp(\hat{\boldsymbol{\beta}} \mathbf{Y}_{\setminus j})$$

$$\mathbf{Y} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{\Sigma}) \Rightarrow \hat{\mathbf{\Sigma}}^{-1}$$

$$Y_t = \hat{\Phi} Y_{t-1} + e_t$$

Empirical Network Models

- Dataset on psychological constructs related to some pathology
 - Self-report questionnaire
 - Cross-sectional / time-series
 - Unhealthy vs healthy controls
- Fit a linear model to the data
 - PMRF or VAR
- Use estimated parameters to construct a network
 - Compute network metrics
 - Node centrality and Density
 - Look for individual/group differences

What's the problem?

Empirical applications have outpaced theoretical contributions

	Theoretical	Empirical
Nodes	Symptoms	?
Dynamics	Bi-stable	?

Empirical Networks: Nodes

Empirical symptom networks

- ▶ Depression (van Borkulo et al 2015)
- ► Schizophrenia (van Rooijen et al 2018)

Empirical Networks: Nodes

Empirical symptom networks

- ▶ Depression (van Borkulo et al 2015)
- Schizophrenia (van Rooijen et al 2018)

Mix of symptoms and non-symptoms

- ► Self-efficacy (Santos et al 2018)
- Working memory (Hoorelbeke et al 2016)

Figure: Hoorelebeke et al (2016)

Empirical Networks: Nodes

Empirical *symptom* networks

- ▶ Depression (van Borkulo et al 2015)
- Schizophrenia (van Rooijen et al 2018)

Mix of symptoms and non-symptoms

- ► Self-efficacy (Santos et al 2018)
- ► Working memory (Hoorelbeke et al 2016)

Pathology networks with no symptoms

- Personality traits (Fonseca Pedrero et al 2018)
- ► **Emotions** or mood states (Bringmann et al 2013; Pe et al 2015)

Figure: Bringmann et al. (2013)

Empirical Networks: Dynamics

Time-series data typically fitted using VAR(1) models

$$Y_t = \Phi Y_{t-1} + e_t$$

- Stationarity assumed
- Uni-stable dynamics

${\sf Empirical} \to {\sf Theoretical?}$

	Theoretical	Empirical
Nodes	Symptoms	Miscellaneous
Dynamics	Bi-stable	Uni-stable

Open Problem 1: Mapping from node to disorder

Meaningful characteristics of symptom networks not meaningful in other domains

- **Symptoms**: Density \rightarrow P(Symptom=On) \rightarrow Disorder present
- **Emotion**: Density \rightarrow ?

Open Problem 1: Mapping from node to disorder

Open Problem 2: Bi-stable systems from Uni-stable models

Theoretical

Empirical

Open Problem 2: Bi-stable systems from Uni-stable models

Open Problem 2: Bi-stable systems from Uni-stable models

Summary

Thanks for listening!

o.ryan@uu.nl

ryanoisin.github.io

