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Undirected Graphical Models (or Markov Random Fields)
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Why Graphical Models?

Worrying

Sleep problems



Why Graphical Models?

ach: aches and pains

agi: psychomotor agitation
anx: feeling anxious

app: change of appetite

con: concentration problems
dia: diarrhea/constipation
ene: energy level

fal: falling asleep

fut: view of myself

hyp: hypersomnia

int: general interest

irr: feeling irritable

pan: panic/phobic symptoms
par: leaden paralysis

ple: capacity for pleasure (not sex)
gmo: quality of mood

ret: psychomotor retardation
rmo: respons of mood

sad: feeling sad

sel: view of oneself

sen: interpersonal sensitivity
sex: interest in sex

sle: sleep during the night
sui: suicidal thoughts

sym: other bodily symptoms
wak: waking up too early
wei: change of weight




Why Graphical Models?




Existing structure estimation methods
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Gaussian Binary (Ising model)



Structure estimation in the Gaussian case

X1 X2 Xz Xa
X1 [/ 3.45 0 0 3.18

Xo 0 214 0 0.82

X3 0 0 321 1.05
X4 \3.18 0.82 1.05 8.77

Estimation:
» glasso (Friedman et al., 2008)
» Nodewise methods (Meinshausen & Biihimann, 2006)



Mixed Graphical Models

Which medication ... ?

How many times ... ?

Reaction time

1Q-Score



Gaussianizing variables
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Two approaches:
» Copula-based (Dobra and Lenosti, 2001; Liu et al. 2012)
» Non-paranormal (Liu et al., 2009; Lafftery et al. 2012)



Conditional Gaussian

Multivariate Gaussian conditioned on 2|Binary nodes| configyrations.



How to estimate a Mixed Graphical Model?
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Probability distribution
over mixed data

X
1.05
1.44
2.75
0.82
0.79

X3

2.75
5.52
1.05
4.22

Xa
3.18
0.82
1.05

4.50 ¢

3.88

Feasible estimation
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Mixed exponential Markov random fields

Conditional univariate members of the exponential family

P(X5|X\s) = €Xp {ES(X\5)¢S(XS) + G(Xs) — ¢(X\s)},

factorize to a global multivariate distribution which factors
according the graph defined by the node-neighborhoods if and only
if Es(X\s) has the form:

k
0s + Z Ostpe(Xe) + ... + Z Otr,...tx H ¢tj(th)a

tEN(s) ta,....,tk €N(s) j=2

(Yang et al., 2014)
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Mixed exponential Markov random fields
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Mixed exponential Markov random fields

Conditional univariate members of the exponential family

P(XS|X\5) = €Xp {ES(X\5)¢S(XS) + G(Xs) — ¢(X\s)},

factorize to a global multivariate distribution which factors
according the graph defined by the node-neighborhoods if and only
if Es(X\s) has the form:

O+ > Os0e(Xe)+ oot D O [[6(X),

teN(s) t2,....,tk €N(S) Jj=2

(Yang et al., 2014)



Mixed MRF: Joint Distribution

The corresponding joint distribution has the form

P(X;0) = exp{)  0sds(Xs) + D D Ostdhs(Xs)e(Xe)+

seV seV teN(s)

tr,...,te€C seV
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Mixed MRF: Joint Distribution

The corresponding joint distribution has the form

P(X;0) = exp{}  Osps(Xe) + D D Oarps(Xs)be(Xe)+

seV seV teN(s)

t1,...,t, €C seV



Mixed MRF: Ising-Gaussian
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If X; Bernoulli, the node-conditional has the form:
'D(XS‘X\s) X exp {gfzr + Z 0rq ZrZq + Z Ore Z yt
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If Xs Gaussian, the node-conditional has the form:
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Mixed MRF: Ising-Gaussian
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Mixed MRF: Ising-Gaussian
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Mixed MRF: Ising-Gaussian
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How to estimate a Mixed Graphical Model?

X Xo Xz Xy X5

X; (404 1.05 0 318 0
+ Xo [ 1.05 1.44 275 0.82 0.79
I'= X3 0 27 552 1.05 4.22

| |
| Xy | 318 0.82 1.05 4.50 3.88
®- @ ik

0.79 422 3.88 3.18

g

Probability distribution
over mixed data

v

Feasible estimation
procedure



Inverse covariance matrices and graph structure

e X1 Xo X3 X

X1 (345 0 0 318
X2 0 214 0 0.82
X3 0 0 321 1.05
X4 \3.18 0.82 1.05 8.77

e X1 Xo Xz Xa

X1 (345 512 0 318
@5 Xo| 512 2.14 0.51 0.82
X3 0 051 321 1.05
Xz \3.18 0.82 1.05 8.77



Generalized covariance matrices

X1
X2
X3
X

X1 X
X1 [3.45 5.12
Xo| 5.12 214
X3 0 0.51
Xy \3.18 0.82
X1 X X3
3.45 0 0
0 2.14 0
0 0 3.21

3.18 0.82 1.05

X1X2 | 498 1.15 4.48

(Loh and Wainwright, 2013)

X3

0.51
3.21
1.05

Xy
3.18
0.82
1.05
8.77
4.37

Xa
3.18
0.82
1.05
8.77

X1 X2
4.98
1.15
4.48
4.37
8.45



Generalized covariance matrices for mixed MRFs

X1 Xo X3 Xqg X1 Xo ...
X1 3.45 0 0 3.18 498 ...
Xo 0 214 0 08 115 ...

X3 0 0 321 1.05 448
Xa 3.18 0.82 1.05 877 4.37

0 X1Xo | 498 1.15 4.48 4.37 8.45



Nodewise estimation algorithm

1. Regress all nodes W\ on node Vs with a /1-penalty

RNRNN

2. Threshold parameters at 7, = \/EHB\HQ\/@

3. Combine parameter estimates
X1 X2 X3

_ Xi[NA 0 4T8
B=X| 0 NA 012

X3\511 0 NA



How to estimate a Mixed Graphical Model?

X1 X2 X3 X4 X5
X; (404 105 0 318 0
‘ _|_ X, | 105 144 275 082 079
| T=Xs| 0 275 552 1.05 4.22

X4 | 318 082 1.05 4.50 3.88
- ©

0 079 422 3.88 3.8

Probability distribution

Feasible estimation
over mixed data

procedure
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Simulation

Estimated Graph

True Graph Data
| 2 estimate
| - —>
/
( {A )

Performance measures:

Sensitivity := “‘E‘gﬁol (true positive rate)

|ENEo| (positive predictive value)

Precision := =
|E|



Simulation: Potts model (m = 3)
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Sensitivity
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Simulation: Potts model (m
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Sensitivity
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Exploring Autism-dataset

» 27 Variables describing the life of individuals diagnosed with
Autism Spectrum Disorder (ASD) in the Netherlands
(N = 3521)

» Variables: Workinghours, Type of Work, Type of housing,
Satisfaction with Work, Openness about diagnosis, Education,
Interests, 1Q, Integration in Society, ...



Exploring Autism-dataset: Graph-visualization

Mixed distribution

Gnd: Gender

Q:1Q

Agd: Age diagnosis

OaD: Openness about Diagnosis
Scs: Success selfrating

WIb: Well being

1iS: Integration in Society

Nofmwa: No of family members with autism
NoC: No of Comorbidities

NoPP: No of Physical Problems
NoT: No of Treatments

NoM: No of Medications

NoCU: No of Care Units

ToH: Type of Housing

NouE: No of unfinished Educations
Tow: Type of work

Wrk: Workinghours

Nol: No of Interests

NoSC: No of Social Contacts
GCdtA: Good Characteristics due to Autism
SGa: Satisfaction: Given advice
S:T: Satisfaction: Treatment

S:M: Satisfaction: Medication
S:C: Satisfaction: Care

S:E: Satisfaction: Education

S:W: Satisfaction: Work

SSC: Satisfaction: Social Contacts
Age: Age




Exploring Autism-dataset: Graph-visualization

Gnd: Gender
Q:1Q
Agd: Age diagnosis
OaD: Openness about Diagnosis
’ Scs: Success selfrating
WIb: Well being
1iS: Integration in Society
Nofmwa: No of family members with autism
NoC: No of Comorbidities
NoPP: No of Physical Problems
NoT: No of Treatments
NoM: No of Medications
NoCU: No of Care Units
ToH: Type of Housing
NouE: No of unfinished Educations
Tow: Type of work
N Wrk: Workinghours
Nol: No of Interests
NoSC: No of Social Contacts
. GCdtA: Good Characteristics due to Autism
SGa: Satisfaction: Given advice
S:T: Satisfaction: Treatment
S:M: Satisfaction: Medication
S:C: Satisfaction: Care
S:E: Satisfaction: Education
S:W: Satisfaction: Work
SSC: Satisfaction: Social Contacts

@ Age: Age

Gaussian distribution



Exploring Autism-dataset: Centrality-measures

Betweenness

Closeness Degree

Workinghours |
Type of work
Type of Housing
Success self-rating
Satisfaction: Work
‘Satisfaction: Treatment
Satisfaction: Social Contacts
Satisfaction: Medication
Satisfaction: Given advice
Satisfaction: Education
Satisfaction: Care
Openness about Diagnosis
No of unfinished Educations
No of Treatments
No of Social Contacts
No of Physical Problems
No of Medications
No of Interests
No of family members with autism
No of Comorbidies |
No of Care Units
1Q
Integration in Society
Happiness
Good Characteristics due to Autism
Gender
Age diagnosis
Age




R-package mgm
Install:
library (devtools)
install_github (' jmbh/mgm’) # development version

install.packages (‘mgm’) # CRAN version
library (mgm)

Fit a mixed graphical model:

> round (head (data_mixed2),4) [1:3,]
[,11 [,2] [,31 [,41 [,5]
[1,] 0.6680 1 11.4234 2 2
[2,] -0.7114 1 22.9344 1 1
[3,] 1.2265 0 34.4966 3 1

type <_ C("g", "p"’ "e"’ "c", "C")
levs <- c¢(1,1,1,3,2)

set.seed (5)

fit <- mgmfit (data = data_example, type = type, lev = levs,
lambda.sel = "CV", folds = 10, gam = .25,
d = 2, rule.reg = "AND", rule.cat = "OR")

?mgmfit



R-package mgm: Output

Output:
> fit
$adj

(.11 [,21 [,31 [,4]1 [,5]
[1,] 0 1 0 0 0
[2,] 1 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 1
[5,] 0 0 0 1 0
Swad]

[,1] [,21 [,3] [,4] [,5]

[1,] 0.000000 0.177809 0 0.0000000 0.0000000
[2,] 0.177809 0.000000 0 0.0000000 0.0000000
[3,]1 0.000000 0.000000 0 0.0000000 0.0000000
[4,] 0.000000 0.000000 0 0.0000000 0.7687597
[5,] 0.000000 0.000000 0 0.7687597 0.0000000

?mgmfit



R-package mgm: Visualize

Output:

library (ggraph)
ggraph (fitS$wadj)

() (2



Summary

1. Method to estimate Mixed Graphical Models
2. Simulations: works in practical situations

3. R-package implementation: mgm

Contact:

jonashaslbeck@gmail.com

http://jmbh.github.io/



