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Undirected Graphical Models (or Markov Random Fields)
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Why Graphical Models?

Worrying

Sleep problems



Why Graphical Models?



Why Graphical Models?



Existing structure estimation methods

Gaussian Binary (Ising model)



Structure estimation in the Gaussian case

1
2

3

4
⇐⇒


X1 X2 X3 X4

X1 3.45 0 0 3.18
X2 0 2.14 0 0.82
X3 0 0 3.21 1.05
X4 3.18 0.82 1.05 8.77



Estimation:

I glasso (Friedman et al., 2008)

I Nodewise methods (Meinshausen & Bühlmann, 2006)



Mixed Graphical Models

How many times ... ?

Which medication ... ?

Reaction time
Gender

IQ-Score



Gaussianizing variables

Two approaches:

I Copula-based (Dobra and Lenosti, 2001; Liu et al. 2012)

I Non-paranormal (Liu et al., 2009; Lafftery et al. 2012)



Conditional Gaussian

Multivariate Gaussian conditioned on 2|Binary nodes| configurations.



How to estimate a Mixed Graphical Model?

+

Feasible estimation 
procedure

Probability distribution 
over mixed data



Mixed exponential Markov random fields

Conditional univariate members of the exponential family

P(Xs |X\s) = exp
{
Es(X\s)φs(Xs) + Cs(Xs)− Φ(X\s)

}
,

factorize to a global multivariate distribution which factors
according the graph defined by the node-neighborhoods if and only
if Es(X\s) has the form:

θs +
∑

t∈N(s)

θstφt(Xt) + ...+
∑

t2,...,tk∈N(s)

θt2,...,tk

k∏
j=2

φtj (Xtj ),

(Yang et al., 2014)
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Mixed MRF: Joint Distribution

The corresponding joint distribution has the form

P(X ; θ) = exp{
∑
s∈V

θsφs(Xs) +
∑
s∈V

∑
t∈N(s)

θstφs(Xs)φt(Xt)+

· · ·+
∑

t1,...,tk∈C
θt1,...,tk

k∏
j=1

φtj (Xtj ) +
∑
s∈V

Cs(Xs)− Φ(θ)}.
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Mixed MRF: Ising-Gaussian

P(Y ,Z ) ∝ exp
{ ∑

s∈VY

θys
σs

Ys +
∑
r∈VZ

θzr Zr +
∑

(s,t)∈EY

θyyst
σsσt

YsYt+

∑
(r ,q)∈EZ

θzzrqZrZq +
∑

(s,r)∈EYZ

θyzsr
σs

YsZr −
∑
s∈VY

Y 2
s

2σ2s

}
If Xs Bernoulli, the node-conditional has the form:

P(Xs |X\s) ∝ exp
{
θzr Zr +

∑
q∈N(r)Z

θzzrqZrZq +
∑

t∈N(r)Y

θyzrt
σt

ZrYt

}
If Xs Gaussian, the node-conditional has the form:

P(Xs |X\s) ∝ exp
{θys
σs

Ys +
∑

t∈N(s)Y

θyyst
σsσt

YsYt +
∑

r∈N(s)Z

θyzsr
σs

YsZr −
Y 2
s

2σ2s

}
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Inverse covariance matrices and graph structure

1
2

3

4

⇐⇒


X1 X2 X3 X4

X1 3.45 0 0 3.18
X2 0 2.14 0 0.82
X3 0 0 3.21 1.05
X4 3.18 0.82 1.05 8.77



1
2

3

4

6⇐⇒


X1 X2 X3 X4

X1 3.45 5.12 0 3.18
X2 5.12 2.14 0.51 0.82
X3 0 0.51 3.21 1.05
X4 3.18 0.82 1.05 8.77





Generalized covariance matrices

1
2

3

4
6⇐⇒


X1 X2 X3 X4

X1 3.45 5.12 0 3.18
X2 5.12 2.14 0.51 0.82
X3 0 0.51 3.21 1.05
X4 3.18 0.82 1.05 8.77



1
2

3

4

⇐⇒



X1 X2 X3 X4 X1X2 . . .

X1 3.45 0 0 3.18 4.98 . . .
X2 0 2.14 0 0.82 1.15 . . .
X3 0 0 3.21 1.05 4.48 . . .
X4 3.18 0.82 1.05 8.77 4.37 . . .
X1X2 4.98 1.15 4.48 4.37 8.45 . . .
...

...
...

...
...

...
. . .



(Loh and Wainwright, 2013)



Generalized covariance matrices for mixed MRFs

1
2

3

4

⇐⇒



X1 X2 X3 X4 X1X2 . . .

X1 3.45 0 0 3.18 4.98 . . .
X2 0 2.14 0 0.82 1.15 . . .
X3 0 0 3.21 1.05 4.48 . . .
X4 3.18 0.82 1.05 8.77 4.37 . . .
X1X2 4.98 1.15 4.48 4.37 8.45 . . .
...

...
...

...
...

...
. . .





Nodewise estimation algorithm

1. Regress all nodes V\s on node Vs with a `1-penalty

1

2

3

1

2

3

1

2

3

2. Threshold parameters at τn =
√
d ||β̂||2

√
log p
n

3. Combine parameter estimates

β̂ =


X1 X2 X3

X1 NA 0 4.78
X2 0 NA 0.12
X3 5.11 0 NA





How to estimate a Mixed Graphical Model?

+

Feasible estimation 
procedure

Probability distribution 
over mixed data



Simulation

            [,1] [,2]       [,3] [,4] [,5]
 [1,]  0.66797239    1 11.4234031    2    2
 [2,] -0.71141360    1 22.9344101    1    1
 [3,]  1.22646566    0 34.4965716    3    1
 [4,]  0.21048012    0  0.3765358    3    2
 [5,] -0.70337679    2  6.7175220    3    2
 [6,] -1.42935082    0  3.2348512    2    2
 [7,]  0.07318635    3  2.7627693    3    2
 [8,]  1.01573968    2 10.1688669    3    2
 [9,] -1.09344360    0 20.4420939    3    2
[10,] -0.49918078    1 10.9095030    2    2
[11,] ...    

True Graph Data Estimated Graph

sample estimate

Performance measures:

Sensitivity := |Ê∩E0|
|E0| (true positive rate)

Precision := |Ê∩E0|
ˆ|E |

(positive predictive value)



Simulation: Potts model (m = 3)
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Simulation: Ising-Gaussian
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Simulation: Ising-Gaussian

1 3 7 20 55 148

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n/p

S
en

si
tiv

ity

1 3 7 20 55 148

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n/p
P

re
ci

si
on

P(edge) = .1
P(edge) = .2
P(edge) = .3

Random graph; d = 2



Exploring Autism-dataset

I 27 Variables describing the life of individuals diagnosed with
Autism Spectrum Disorder (ASD) in the Netherlands
(N = 3521)

I Variables: Workinghours, Type of Work, Type of housing,
Satisfaction with Work, Openness about diagnosis, Education,
Interests, IQ, Integration in Society, ...



Exploring Autism-dataset: Graph-visualization

Gnd

IQ

Agd

OaD

Scs

Wlb

IiS

Nofmwa

NoC
NoPP

NoT

NoM

NoCU

ToH

NouE

Tow

Wrk

NoI

NoSC

GCdtA

SGa

S:T

S:M

S:C

S:E

S:W

SSC

Age

Gnd: Gender
IQ: IQ
Agd: Age diagnosis
OaD: Openness about Diagnosis
Scs: Success selfrating
Wlb: Well being
IiS: Integration in Society
Nofmwa: No of family members with autism
NoC: No of Comorbidities
NoPP: No of Physical Problems
NoT: No of Treatments
NoM: No of Medications
NoCU: No of Care Units
ToH: Type of Housing
NouE: No of unfinished Educations
Tow: Type of work
Wrk: Workinghours
NoI: No of Interests
NoSC: No of Social Contacts
GCdtA: Good Characteristics due to Autism
SGa: Satisfaction: Given advice
S:T: Satisfaction: Treatment
S:M: Satisfaction: Medication
S:C: Satisfaction: Care
S:E: Satisfaction: Education
S:W: Satisfaction: Work
SSC: Satisfaction: Social Contacts
Age: Age

Mixed distribution
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Gaussian distribution



Exploring Autism-dataset: Centrality-measures

Betweenness Closeness Degree
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Age diagnosis

Gender

Good Characteristics due to Autism

Happiness

Integration in Society

IQ

No of Care Units

No of Comorbidities

No of family members with autism

No of Interests

No of Medications

No of Physical Problems

No of Social Contacts

No of Treatments

No of unfinished Educations

Openness about Diagnosis

Satisfaction: Care

Satisfaction: Education

Satisfaction: Given advice

Satisfaction: Medication

Satisfaction: Social Contacts

Satisfaction: Treatment

Satisfaction: Work

Success self−rating

Type of Housing

Type of work

Workinghours

0 1 2 3 −1 0 1 2 −1 0 1 2



R-package mgm
Install:

library(devtools)
install_github(’jmbh/mgm’) # development version
install.packages(’mgm’) # CRAN version
library(mgm)

Fit a mixed graphical model:

> round(head(data_mixed2),4)[1:3,]
[,1] [,2] [,3] [,4] [,5]

[1,] 0.6680 1 11.4234 2 2
[2,] -0.7114 1 22.9344 1 1
[3,] 1.2265 0 34.4966 3 1

type <- c("g", "p", "e", "c", "c")
levs <- c(1,1,1,3,2)

set.seed(5)
fit <- mgmfit(data = data_example, type = type, lev = levs,

lambda.sel = "CV", folds = 10, gam = .25,
d = 2, rule.reg = "AND", rule.cat = "OR")

?mgmfit



R-package mgm: Output

Output:

> fit
$adj

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 0 0 0
[2,] 1 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 1
[5,] 0 0 0 1 0

$wadj
[,1] [,2] [,3] [,4] [,5]

[1,] 0.000000 0.177809 0 0.0000000 0.0000000
[2,] 0.177809 0.000000 0 0.0000000 0.0000000
[3,] 0.000000 0.000000 0 0.0000000 0.0000000
[4,] 0.000000 0.000000 0 0.0000000 0.7687597
[5,] 0.000000 0.000000 0 0.7687597 0.0000000

?mgmfit



R-package mgm: Visualize

Output:

library(qgraph)
qgraph(fit$wadj)

1

2

34

5



Summary

1. Method to estimate Mixed Graphical Models

2. Simulations: works in practical situations

3. R-package implementation: mgm

Contact:

jonashaslbeck@gmail.com

http://jmbh.github.io/


