Structure Estimation for Mixed Graphical Models

Jonas Haslbeck ${ }^{1}$ Lourens Waldorp ${ }^{2}$
${ }^{1}$ Department of Methodology \& Statistics, Utrecht University
${ }^{2}$ Department of Psychological Methods, University of Amsterdam

September 1, 2015

Overview

1. Background and current limitations
2. Theory: Modeling and estimating mixed graphical models
3. Performance benchmarks
4. Application to Autism dataset
5. Implementation: R-package

Markov random fields

$$
\begin{aligned}
& X_{A} \Perp X_{B} \mid X_{C} \\
& X_{A} \Perp X_{C} \mid X_{B} \\
& X_{C} \Perp X_{B} \mid X_{A}
\end{aligned}
$$

Why are Markov random fields interesting?

Depression Symptoms

Existing structure estimation methods

Gaussian

Binary (Ising model)

Structure estimation in the Gaussian case

Estimation:

- glasso (Friedman et al., 2008)
- Nodewise methods (Meinshausen \& Bühlmann, 2006)

Structure estimation for the Ising model

(7)

Estimation via nodewise methods:

- ℓ_{1}-regularized logistic regression (Ravikumar et al.,2010)
- eLasso (van Borkulo et al., 2014)

Mixed Markov random fields

Gaussianizing variables

Two approaches:

- Copula-based (Dobra and Lenosti, 2001; Liu et al. 2012)
- Non-paranormal (Liu et al., 2009; Lafftery et al. 2012)

Conditional Gaussian

Multivariate gaussian conditioned on $2^{\mid \text {Binary nodes } \mid}$ configurations.

Improvements:

- Only pairwise interactions (Lee and Hastie, 2012)
- Only up to three-way interactions (Cheng et al., 2013)

How to estimate mixed Markov random fields in a principled way?

Modeling

Estimation

Modeling mixed Markov random fields

Conditional univariate distributions

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right)
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields

Conditional univariate members of the exponential family

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{E_{s}\left(X_{\backslash s}\right) \phi_{s}\left(X_{s}\right)+C_{s}\left(X_{s}\right)-\Phi\left(X_{\backslash s}\right)\right\}
$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_{s}\left(X_{\backslash s}\right)$ has the form:

$$
\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \phi_{t}\left(X_{t}\right)+\ldots+\sum_{t_{2}, \ldots, t_{k} \in N(s)} \theta_{t_{2}, \ldots, t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right),
$$

where $\theta_{s .}:=\left\{\theta_{s}, \theta_{s t}, \ldots, \theta_{s t_{2} \ldots t_{k}}\right\}$ is a set of parameters and $N(s)$ is the set of neighbors of node s according to graph G.

Mixed exponential Markov random fields: Joint

The corresponding joint distribution has the form:

$$
\begin{array}{r}
P(X ; \theta)=\exp \left\{\sum_{s \in V} \theta_{s} \phi_{s}\left(X_{s}\right)+\sum_{s \in V} \sum_{t \in N(s)} \theta_{s t} \phi_{s}\left(X_{s}\right) \phi_{t}\left(X_{t}\right)+\right. \\
\left.\cdots+\sum_{t_{1}, \ldots, t_{k} \in \mathcal{C}} \theta_{t_{1}, \ldots, t_{k}} \prod_{j=1}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right)+\sum_{s \in V} C_{s}\left(X_{s}\right)-\Phi(\theta)\right\},
\end{array}
$$

where $\Phi(\theta)$ is the log-normalization constant.

Mixed exponential Markov random fields: Joint

The corresponding joint distribution has the form:

$$
\begin{array}{r}
P(X ; \theta)=\exp \left\{\sum_{s \in V} \theta_{s} \phi_{s}\left(X_{s}\right)+\sum_{s \in V} \sum_{t \in N(s)} \theta_{s t} \phi_{s}\left(X_{s}\right) \phi_{t}\left(X_{t}\right)+\right. \\
\left.\cdots+\sum_{t_{1}, \ldots, t_{k} \in \mathcal{C}} \theta_{t_{1}, \ldots, t_{k}} \prod_{j=1}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right)+\sum_{s \in V} C_{s}\left(X_{s}\right)-\Phi(\theta)\right\},
\end{array}
$$

where $\Phi(\theta)$ is the log-normalization constant.

Mixed exponential Markov random fields: Joint

The corresponding joint distribution has the form:

$$
\begin{array}{r}
P(X ; \theta)=\exp \left\{\sum_{s \in V} \theta_{s} \phi_{s}\left(X_{s}\right)+\sum_{s \in V} \sum_{t \in N(s)} \theta_{s t} \phi_{s}\left(X_{s}\right) \phi_{t}\left(X_{t}\right)+\right. \\
\left.\cdots+\sum_{t_{1}, \ldots, t_{k} \in \mathcal{C}} \theta_{t_{1}, \ldots, t_{k}} \prod_{j=1}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right)+\sum_{s \in V} C_{s}\left(X_{s}\right)-\Phi(\theta)\right\},
\end{array}
$$

where $\Phi(\theta)$ is the log-normalization constant.

Mixed exponential Markov random fields: Joint

The corresponding joint distribution has the form:

$$
\begin{array}{r}
P(X ; \theta)=\exp \left\{\sum_{s \in V} \theta_{s} \phi_{s}\left(X_{s}\right)+\sum_{s \in V} \sum_{t \in N(s)} \theta_{s t} \phi_{s}\left(X_{s}\right) \phi_{t}\left(X_{t}\right)+\right. \\
\left.\cdots+\sum_{t_{1}, \ldots, t_{k} \in \mathcal{C}} \theta_{t_{1}, \ldots, t_{k}} \prod_{j=1}^{k} \phi_{t_{j}}\left(X_{t_{j}}\right)+\sum_{s \in V} C_{s}\left(X_{s}\right)-\Phi(\theta)\right\},
\end{array}
$$

where $\Phi(\theta)$ is the log-normalization constant.

Mixed exponential Markov random fields: Ising-Gaussian

$$
\begin{array}{r}
P(Y, Z) \propto \exp \left\{\sum_{s \in V_{Y}} \frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{r \in V_{Z}} \theta_{r}^{z} Z_{r}+\sum_{(s, t) \in E_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\right. \\
\left.\sum_{(r, q) \in E_{Z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{(s, r) \in E_{Y Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\sum_{s \in V_{Y}} \frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
\end{array}
$$

If X_{s} Bernoulli, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\theta_{r}^{z} Z_{r}+\sum_{q \in N(r)_{z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{t \in N(r)_{Y}} \frac{\theta_{r t}^{y z}}{\sigma_{t}} Z_{r} Y_{t}\right\}
$$

If X_{s} Gaussian, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{t \in N(s)_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\sum_{r \in N(s)_{Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
$$

Mixed exponential Markov random fields: Ising-Gaussian

$$
\begin{array}{r}
P(Y, Z) \propto \exp \left\{\sum_{s \in V_{Y}} \frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{r \in V_{Z}} \theta_{r}^{z} Z_{r}+\sum_{(s, t) \in E_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\right. \\
\left.\sum_{(r, q) \in E_{Z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{(s, r) \in E_{Y Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\sum_{s \in V_{Y}} \frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
\end{array}
$$

If X_{s} Bernoulli, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\theta_{r}^{z} Z_{r}+\sum_{q \in N(r)_{z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{t \in N(r)_{Y}} \frac{\theta_{r t}^{y z}}{\sigma_{t}} Z_{r} Y_{t}\right\}
$$

If X_{s} Gaussian, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{t \in N(s)_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\sum_{r \in N(s)_{Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
$$

Mixed exponential Markov random fields: Ising-Gaussian

$$
\begin{array}{r}
P(Y, Z) \propto \exp \left\{\sum_{s \in V_{Y}} \frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{r \in V_{Z}} \theta_{r}^{z} Z_{r}+\sum_{(s, t) \in E_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\right. \\
\left.\sum_{(r, q) \in E_{Z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{(s, r) \in E_{Y Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\sum_{s \in V_{Y}} \frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
\end{array}
$$

If X_{s} Bernoulli, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\theta_{r}^{z} Z_{r}+\sum_{q \in N(r)_{z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{t \in N(r)_{Y}} \frac{\theta_{r t}^{y z}}{\sigma_{t}} Z_{r} Y_{t}\right\}
$$

If X_{s} Gaussian, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{t \in N(s)_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\sum_{r \in N(s)_{Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
$$

Mixed exponential Markov random fields: Ising-Gaussian

$$
\begin{array}{r}
P(Y, Z) \propto \exp \left\{\sum_{s \in V_{Y}} \frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{r \in V_{Z}} \theta_{r}^{z} Z_{r}+\sum_{(s, t) \in E_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\right. \\
\left.\sum_{(r, q) \in E_{Z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{(s, r) \in E_{Y Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\sum_{s \in V_{Y}} \frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
\end{array}
$$

If X_{s} Bernoulli, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\theta_{r}^{z} Z_{r}+\sum_{q \in N(r)_{z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{t \in N(r)_{Y}} \frac{\theta_{r t}^{y z}}{\sigma_{t}} Z_{r} Y_{t}\right\}
$$

If X_{s} Gaussian, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{t \in N(s)_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\sum_{r \in N(s)_{Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
$$

Mixed exponential Markov random fields: Ising-Gaussian

$$
\begin{array}{r}
P(Y, Z) \propto \exp \left\{\sum_{s \in V_{Y}} \frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{r \in V_{Z}} \theta_{r}^{z} Z_{r}+\sum_{(s, t) \in E_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\right. \\
\left.\sum_{(r, q) \in E_{Z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{(s, r) \in E_{Y Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\sum_{s \in V_{Y}} \frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
\end{array}
$$

If X_{s} Bernoulli, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\theta_{r}^{z} Z_{r}+\sum_{q \in N(r)_{z}} \theta_{r q}^{z z} Z_{r} Z_{q}+\sum_{t \in N(r)_{Y}} \frac{\theta_{r t}^{y z}}{\sigma_{t}} Z_{r} Y_{t}\right\}
$$

If X_{s} Gaussian, the node-conditional has the form:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{t \in N(s)_{Y}} \frac{\theta_{s t}^{y y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\sum_{r \in N(s)_{Z}} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
$$

How to estimate mixed Markov random fields in a principled way?

Modeling

Estimation

Inverse covariance matrices and graph structure

Generalized covariance matrices

(Loh and Wainwright, 2013)

Generalized covariance matrices \& nodewise regression

Corollary:
For any graph with maximal degree d, the inverse Γ of the covariance matrix over the node s and all its candidate neighborhoods up to size d is graph structured with respect to the $N(s)$. That is, $\Gamma(s, t)=0$ whenever $t \notin N(s)$.

$$
\begin{aligned}
& \\
& X_{s} \\
& X_{s} \\
& X_{t_{1}} \\
& X_{t_{1}}
\end{aligned} X_{t_{2}}\left(\begin{array}{c}
\cdots \\
3 \\
X_{t_{2}} \\
\vdots
\end{array} \begin{array}{ccc}
1.14 & 0 & \cdots \\
1.27 & 0 & 3.21 \\
\vdots & \vdots & \vdots \\
\ddots
\end{array}\right)
$$

Generalized covariance matrices for mixed exponential Markov random fields

How to estimate mixed Markov random fields in a principled way?

Modeling

Estimation

Nodewise estimation algorithm

1. Regress all nodes $V_{\backslash s}$ on node V_{s} with a ℓ_{1}-penalty

2. Threshold parameters at $\tau_{n}=\sqrt{d}\|\widehat{\beta}\|_{2} \sqrt{\frac{\log p}{n}}$
3. Combine parameter estimates

$$
\widehat{\beta}=\begin{aligned}
& X_{1} \\
& X_{2} \\
& X_{3}
\end{aligned}\left(\begin{array}{ccc}
X_{1} & X_{2} & X_{3} \\
N A & 0 & 4.78 \\
0 & N A & 0.12 \\
5.11 & 0 & N A
\end{array}\right)
$$

Simulation: Setup

Varied factors:

1. Sparsity: $\{.1, .2, .3\}$
2. Ratio $\frac{n}{p}: \exp \{0,1,2,3,4,5\} \approx\{1,3,7,20,55,148\}$
3. Degree of augmented interactions $d:\{1,2,3\}$
4. Different (mixed) graphs
4.1 Potts model with $m=\{2,3,4\}$
4.2 Ising-Gaussian
4.3 Ising-Exponential
4.4 Ising-Poisson

Results: Potts model (m=2) (Ising model)

Results: Potts model (m=2) (Ising model)

Sensitivity

Precision

Results: Potts model $(\mathrm{m}=3)$

Sensitivity

Precision

Results: Ising-Gaussian

Sensitivity

Precision

Results: Ising-Poisson

Sensitivity

Precision

Exploring Autism-dataset

- 27 Variables describing the life of individuals diagnosed with Autism Spectrum Disorder (ASD) in the Netherlands ($\mathrm{N}=3521$)
- Variables: Workinghours, Type of Work, Type of housing, Success, Satisfaction with Work, Satisfaction with treatment, Satisfaction with social contacts, Satisfaction with medication, Satisfaction with given advice, Satisfaction with education, Satisfaction with Care, Openness about diagnosis, Education, Number of social contacts, Physical problems, Medications, Interests, Family members with autism, Number of care units, IQ, Integration in Society, ...

Exploring Autism-dataset: Graph-visualization

- Demographics
- Psychological
- Social environment
- Medical

Exploring Autism-dataset: Centrality-measures

R-package mgm

Install:

```
library(devtools)
install_github("jmbh/mgm")
library(mgm)
```

Fit a mixed Markov random field:

```
> round(head(data_mixed2),4)[1:3,]
    [,1] [,2] [,3] [,4] [,5]
[1,] 0.6680 1 11.4234 2 2
[2,] -0.7114 1 22.9344 1 1
[3,] 1.2265 0 34.4966 3 1
type <- c("g", "p", "e", "c", "c")
levs <- c(1,1,1,3,2)
set.seed(5)
fit <- mgmfit(data = data_example, type = type, lev = levs,
                        lambda.sel = "CV", folds = 10, gam = .25,
                        d = 2, rule.reg = "AND", rule.cat = "OR")
```


R-package mgm: Output

Output:

Pfit					
\$adj					
	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0	1	0	0	0
$[2]$,	1	0	0	0	0
$[3]$,	0	0	0	0	0
$[4]$,	0	0	0	0	1
$[5]$,	0	0	0	1	0

\$wadj

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0.000000	0.177809	0	0.0000000	0.0000000
$[2]$,	0.177809	0.000000	0	0.0000000	0.0000000
$[3]$,	0.000000	0.000000	0	0.0000000	0.0000000
$[4]$,	0.000000	0.000000	0	0.0000000	0.7687597
$[5]$,	0.000000	0.000000	0	0.7687597	0.0000000

[^0]
R-package mgm: Visualize

Output:
library (qgraph)
qgraph(fit\$wadj)

Summary

1. First "principled" method to estimate mixed Markov random fields
2. Performance measures: works in practical situations
3. R-package implementation: mgm

Contact:
jonashaslbeck@gmail.com
https://github.com/jmbh

Backup slides

Does proper modeling matter?

()

1: Gender
2: 10
3: Age diagnosis
4: Openness about Diagnosis
5: Success selt-rating
6: Happiness
7: Integration in Society
8: No of family members with autiom
9: No of Comorbidities
10: No of Physical Probiems
12: No of Medications
13: No of Care Units
14: Type of Housing
15: No of untinished Educations
16: Type of work
17: Workinghours
18: No of Interests
19: No of Social Contacts
20: Good Characteristics due to Autism
21: Satisfaction: Given advice
21: Satssfaction: Given advice 22: Satsfaction: Treatment 23: Satssfaction: Medication 24: Satistaction: Care
25: Satsfaction: Edu
25: Satstaction: Educa
27: Satisfactaction: Sockial Contacts
28: Age

Mixed
All Gaussian

Ising-Gaussian: Rewrite conditional Gaussian (1)

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{\frac{\theta_{s}^{y}}{\sigma_{s}} Y_{s}+\sum_{t \in N(s) \curlyvee} \frac{\theta_{s t}^{\vee y}}{\sigma_{s} \sigma_{t}} Y_{s} Y_{t}+\sum_{r \in N(s) z} \frac{\theta_{s r}^{y z}}{\sigma_{s}} Y_{s} Z_{r}-\frac{Y_{s}^{2}}{2 \sigma_{s}^{2}}\right\}
$$

If we let $\sigma=1$ and factor out Y_{s}, we get:

$$
P\left(X_{s} \mid X_{\backslash s}\right) \propto \exp \left\{Y_{s}\left(\theta_{s}^{y}+\sum_{t \in N(s)_{Y}} \theta_{s t}^{y y} Y_{t}+\sum_{r \in N(s)_{Z}} \theta_{s r}^{y z} Z_{r}\right)-\frac{Y_{s}^{2}}{2}\right\}
$$

Ising-Gaussian: Rewrite conditional Gaussian (2)

Now, if we let $\mu_{s}=\theta_{s}^{y}+\sum_{t \in N(s)_{r}} \theta_{s t}^{y Y} Y_{t}+\sum_{r \in N(s) z} \theta_{s r}^{y z} Z_{r}$, we have

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\exp \left\{X_{s} \mu_{s}+\frac{X_{s}^{2}}{2}-\Phi\left(X_{\backslash s}\right)\right\},
$$

where $\Phi\left(X_{\backslash s}\right)=\log \left(\sqrt{2 \pi} e^{-\frac{\mu_{s}^{2}}{2}}\right)$. Taking $\frac{\mu_{s}^{2}}{2}$ out of the \log normalization constant, with basic algebra we arrive at the well-known form of the univariate Gaussian distribution with unit variance:

$$
P\left(X_{s} \mid X_{\backslash s}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(X_{s}-\mu_{s}\right)^{2}}{2}\right\}
$$

All results: Categorical

Sensitivity
Categorical ($\mathbf{m}=2$)
Categorical ($m=3$)
Categorical ($\mathrm{m}=4$)

Precision

All results: Mixed

Sensitivity
Binary-Gaussian
Binary-Poisson
Binary-Exponential

Precision

[^0]: ?mgmfit

