Structure Estimation for Mixed Graphical Models

Jonas Haslbeck ¹ Lourens Waldorp ²

¹Department of Methodology & Statistics, Utrecht University ²Department of Psychological Methods, University of Amsterdam

September 1, 2015

Overview

- 1. Background and current limitations
- 2. Theory: Modeling and estimating mixed graphical models
- 3. Performance benchmarks
- 4. Application to Autism dataset
- 5. Implementation: R-package

Markov random fields

Why are Markov random fields interesting?

Depression Symptoms

Existing structure estimation methods

Structure estimation in the Gaussian case

Estimation:

- glasso (Friedman et al., 2008)
- Nodewise methods (Meinshausen & Bühlmann, 2006)

Structure estimation for the Ising model

Estimation via nodewise methods:

- ▶ ℓ₁-regularized logistic regression (Ravikumar et al.,2010)
- eLasso (van Borkulo et al., 2014)

Mixed Markov random fields

Gaussianizing variables

Two approaches:

- Copula-based (Dobra and Lenosti, 2001; Liu et al. 2012)
- ▶ Non-paranormal (Liu et al., 2009; Lafftery et al. 2012)

Conditional Gaussian

Multivariate gaussian conditioned on 2^{|Binary nodes|} configurations.

Improvements:

- Only pairwise interactions (Lee and Hastie, 2012)
- Only up to three-way interactions (Cheng et al., 2013)

How to estimate mixed Markov random fields in a principled way?

Modeling mixed Markov random fields

Conditional univariate distributions

Joint distribution

(Yang et al., 2014)

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in N(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

Conditional univariate members of the exponential family

$$P(X_s|X_{\backslash s}) = \exp\left\{\frac{E_s(X_{\backslash s})\phi_s(X_s) + C_s(X_s) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in N(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in N(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in N(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in N(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_{s} + \sum_{t \in N(s)} \theta_{st} \phi_{t}(X_{t}) + \ldots + \sum_{t_{2},\ldots,t_{k} \in N(s)} \theta_{t_{2},\ldots,t_{k}} \prod_{j=2}^{k} \phi_{t_{j}}(X_{t_{j}}),$$

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in N(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in N(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

Conditional univariate members of the exponential family

$$P(X_{s}|X_{\backslash s}) = \exp\left\{E_{s}(X_{\backslash s})\phi_{s}(X_{s}) + C_{s}(X_{s}) - \Phi(X_{\backslash s})\right\},\$$

factorize to a global multivariate distribution which factors according the graph defined by the node-neighborhoods if and only if $E_s(X_{\setminus s})$ has the form:

$$\theta_s + \sum_{t \in \mathcal{N}(s)} \theta_{st} \phi_t(X_t) + \ldots + \sum_{t_2, \ldots, t_k \in \mathcal{N}(s)} \theta_{t_2, \ldots, t_k} \prod_{j=2}^k \phi_{t_j}(X_{t_j}),$$

The corresponding joint distribution has the form:

$$P(X;\theta) = \exp\{\sum_{s \in V} \theta_s \phi_s(X_s) + \sum_{s \in V} \sum_{t \in N(s)} \theta_{st} \phi_s(X_s) \phi_t(X_t) + \cdots + \sum_{t_1,\dots,t_k \in \mathcal{C}} \theta_{t_1,\dots,t_k} \prod_{j=1}^k \phi_{t_j}(X_{t_j}) + \sum_{s \in V} C_s(X_s) - \Phi(\theta)\},$$

The corresponding joint distribution has the form:

$$P(X;\theta) = \exp\{\sum_{s \in V} \theta_s \phi_s(X_s) + \sum_{s \in V} \sum_{t \in N(s)} \theta_{st} \phi_s(X_s) \phi_t(X_t) + \cdots + \sum_{t_1,\dots,t_k \in \mathcal{C}} \theta_{t_1,\dots,t_k} \prod_{j=1}^k \phi_{t_j}(X_{t_j}) + \sum_{s \in V} C_s(X_s) - \Phi(\theta)\},$$

The corresponding joint distribution has the form:

$$P(X;\theta) = \exp\{\sum_{s \in V} \theta_s \phi_s(X_s) + \sum_{s \in V} \sum_{t \in N(s)} \theta_{st} \phi_s(X_s) \phi_t(X_t) + \cdots + \sum_{t_1,\dots,t_k \in \mathcal{C}} \theta_{t_1,\dots,t_k} \prod_{j=1}^k \phi_{t_j}(X_{t_j}) + \sum_{s \in V} C_s(X_s) - \Phi(\theta)\},$$

The corresponding joint distribution has the form:

$$P(X;\theta) = \exp\{\sum_{s \in V} \theta_s \phi_s(X_s) + \sum_{s \in V} \sum_{t \in N(s)} \theta_{st} \phi_s(X_s) \phi_t(X_t) + \cdots + \sum_{t_1,\dots,t_k \in \mathcal{C}} \theta_{t_1,\dots,t_k} \prod_{j=1}^k \phi_{t_j}(X_{t_j}) + \sum_{s \in V} C_s(X_s) - \Phi(\theta)\},$$

$$P(Y,Z) \propto \exp\left\{\sum_{s \in V_Y} \frac{\theta_s^y}{\sigma_s} Y_s + \sum_{r \in V_Z} \theta_r^z Z_r + \sum_{(s,t) \in E_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t} Y_s Y_t + \sum_{(r,q) \in E_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{(s,r) \in E_{YZ}} \frac{\theta_{sr}^{yz}}{\sigma_s} Y_s Z_r - \sum_{s \in V_Y} \frac{Y_s^2}{2\sigma_s^2}\right\}$$

If X_s Bernoulli, the node-conditional has the form:

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\theta_r^z Z_r + \sum_{q \in N(r)_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{t \in N(r)_Y} \frac{\theta_{rt}^{yz}}{\sigma_t} Z_r Y_t\right\}$$

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\frac{\theta_s^y}{\sigma_s}Y_s + \sum_{t \in N(s)_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t}Y_sY_t + \sum_{r \in N(s)_Z} \frac{\theta_{sr}^{yz}}{\sigma_s}Y_sZ_r - \frac{Y_s^2}{2\sigma_s^2}\right\}$$

$$P(Y,Z) \propto \exp\left\{\sum_{s \in V_Y} \frac{\theta_s^y}{\sigma_s} Y_s + \sum_{r \in V_Z} \theta_r^z Z_r + \sum_{(s,t) \in E_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t} Y_s Y_t + \sum_{(r,q) \in E_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{(s,r) \in E_{YZ}} \frac{\theta_{sr}^{yz}}{\sigma_s} Y_s Z_r - \sum_{s \in V_Y} \frac{Y_s^2}{2\sigma_s^2}\right\}$$

If X_s Bernoulli, the node-conditional has the form:

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\theta_r^z Z_r + \sum_{q \in N(r)_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{t \in N(r)_Y} \frac{\theta_{rt}^{yz}}{\sigma_t} Z_r Y_t\right\}$$

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\frac{\theta_s^y}{\sigma_s}Y_s + \sum_{t \in N(s)_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t}Y_sY_t + \sum_{r \in N(s)_Z} \frac{\theta_{sr}^{yz}}{\sigma_s}Y_sZ_r - \frac{Y_s^2}{2\sigma_s^2}\right\}$$

$$P(Y,Z) \propto \exp\left\{\sum_{s \in V_Y} \frac{\theta_s^y}{\sigma_s} Y_s + \sum_{r \in V_Z} \theta_r^z Z_r + \sum_{(s,t) \in E_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t} Y_s Y_t + \sum_{(r,q) \in E_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{(s,r) \in E_{YZ}} \frac{\theta_{sr}^{yz}}{\sigma_s} Y_s Z_r - \sum_{s \in V_Y} \frac{Y_s^2}{2\sigma_s^2}\right\}$$

If X_s Bernoulli, the node-conditional has the form:

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\theta_r^z Z_r + \sum_{q \in N(r)_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{t \in N(r)_Y} \frac{\theta_{rt}^{yz}}{\sigma_t} Z_r Y_t\right\}$$

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\frac{\theta_s^y}{\sigma_s}Y_s + \sum_{t \in N(s)_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t}Y_sY_t + \sum_{r \in N(s)_Z} \frac{\theta_{sr}^{yz}}{\sigma_s}Y_sZ_r - \frac{Y_s^2}{2\sigma_s^2}\right\}$$

$$P(Y,Z) \propto \exp\left\{\sum_{s \in V_Y} \frac{\theta_s^y}{\sigma_s} Y_s + \sum_{r \in V_Z} \theta_r^z Z_r + \sum_{(s,t) \in E_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t} Y_s Y_t + \sum_{(r,q) \in E_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{(s,r) \in E_{YZ}} \frac{\theta_{sr}^{yz}}{\sigma_s} Y_s Z_r - \sum_{s \in V_Y} \frac{Y_s^2}{2\sigma_s^2}\right\}$$

If X_s Bernoulli, the node-conditional has the form:

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\theta_r^z Z_r + \sum_{q \in N(r)_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{t \in N(r)_Y} \frac{\theta_{rt}^{yz}}{\sigma_t} Z_r Y_t\right\}$$

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\frac{\theta_s^y}{\sigma_s}Y_s + \sum_{t \in N(s)_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t}Y_sY_t + \sum_{r \in N(s)_Z} \frac{\theta_{sr}^{yz}}{\sigma_s}Y_sZ_r - \frac{Y_s^2}{2\sigma_s^2}\right\}$$

$$P(Y,Z) \propto \exp\left\{\sum_{s \in V_Y} \frac{\theta_s^y}{\sigma_s} Y_s + \sum_{r \in V_Z} \theta_r^z Z_r + \sum_{(s,t) \in E_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t} Y_s Y_t + \sum_{(r,q) \in E_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{(s,r) \in E_{YZ}} \frac{\theta_{sr}^{yz}}{\sigma_s} Y_s Z_r - \sum_{s \in V_Y} \frac{Y_s^2}{2\sigma_s^2}\right\}$$

If X_s Bernoulli, the node-conditional has the form:

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\theta_r^z Z_r + \sum_{q \in N(r)_Z} \theta_{rq}^{zz} Z_r Z_q + \sum_{t \in N(r)_Y} \frac{\theta_{rt}^{yz}}{\sigma_t} Z_r Y_t\right\}$$

$$P(X_{s}|X_{\backslash s}) \propto \exp\left\{\frac{\theta_{s}^{y}}{\sigma_{s}}Y_{s} + \sum_{t \in N(s)_{Y}}\frac{\theta_{st}^{yy}}{\sigma_{s}\sigma_{t}}Y_{s}Y_{t} + \sum_{r \in N(s)_{Z}}\frac{\theta_{sr}^{yz}}{\sigma_{s}}Y_{s}Z_{r} - \frac{Y_{s}^{2}}{2\sigma_{s}^{2}}\right\}$$

How to estimate mixed Markov random fields in a principled way?

Inverse covariance matrices and graph structure

Generalized covariance matrices

(Loh and Wainwright, 2013)

Generalized covariance matrices & nodewise regression

Corollary:

For any graph with maximal degree d, the inverse Γ of the covariance matrix over the node s and all its candidate neighborhoods up to size d is graph structured with respect to the N(s). That is, $\Gamma(s, t) = 0$ whenever $t \notin N(s)$.

$$\begin{array}{ccccc} X_s & X_{t_1} & X_{t_2} & \dots \\ X_s & 3.45 & 0 & 1.27 & \dots \\ X_{t_1} & 0 & 2.14 & 0 & \dots \\ X_{t_2} & 1.27 & 0 & 3.21 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{array}$$

Generalized covariance matrices for mixed exponential Markov random fields

3		X_1	X_{1}	X ₂			X ₁ X ₂ 4.98	
	\iff		0	2.14	Ő	0.82	1.15	
		X_3	0	0	3.21		4.48	
		X_4	3.18		1.05		4.37	
		X_1X_2				4.37		
(4)		:	(:	÷	÷	÷	÷	·)
2 1								

How to estimate mixed Markov random fields in a principled way?

Nodewise estimation algorithm

1. Regress all nodes $V_{\setminus s}$ on node V_s with a ℓ_1 -penalty

- 2. Threshold parameters at $\tau_n = \sqrt{d} ||\hat{\beta}||_2 \sqrt{\frac{\log p}{n}}$
- 3. Combine parameter estimates

$$\widehat{\beta} = \begin{array}{ccc} X_1 & X_2 & X_3 \\ X_1 & (\begin{array}{ccc} NA & 0 & 4.78 \\ 0 & NA & 0.12 \\ X_3 & 5.11 & 0 & NA \end{array} \end{array}$$

Simulation: Setup

Varied factors:

- 1. Sparsity: $\{.1,.2,.3\}$
- 2. Ratio $\frac{n}{p}$: exp $\{0, 1, 2, 3, 4, 5\} \approx \{1, 3, 7, 20, 55, 148\}$
- 3. Degree of augmented interactions d: $\{1, 2, 3\}$
- 4. Different (mixed) graphs
 - 4.1 Potts model with $m = \{2, 3, 4\}$
 - 4.2 Ising-Gaussian
 - 4.3 Ising-Exponential
 - 4.4 Ising-Poisson

Results: Potts model (m=2) (Ising model)

Results: Potts model (m=2) (Ising model)

Results: Potts model (m=3)

Results: Ising-Gaussian

Results: Ising-Poisson

Exploring Autism-dataset

- 27 Variables describing the life of individuals diagnosed with Autism Spectrum Disorder (ASD) in the Netherlands (N=3521)
- Variables: Workinghours, Type of Work, Type of housing, Success, Satisfaction with Work, Satisfaction with treatment, Satisfaction with social contacts, Satisfaction with medication, Satisfaction with given advice, Satisfaction with education, Satisfaction with Care, Openness about diagnosis, Education, Number of social contacts, Physical problems, Medications, Interests, Family members with autism, Number of care units, IQ, Integration in Society, ...

Exploring Autism-dataset: Graph-visualization

Exploring Autism-dataset: Centrality-measures

R-package mgm

Install:

library(devtools)
install_github("jmbh/mgm")
library(mgm)

Fit a mixed Markov random field:

```
> round(head(data_mixed2),4)[1:3,]
       [,1] [,2] [,3] [,4] [,5]
[1,] 0.6680 1 11.4234 2 2
[2,] -0.7114 1 22.9344 1 1
[3,] 1.2265 0 34.4966 3 1
type <- c("q", "p", "e", "c", "c")
levs <- c(1, 1, 1, 3, 2)
set.seed(5)
fit <- mgmfit(data = data_example, type = type, lev = levs,</pre>
              lambda.sel = "CV", folds = 10, gam = .25,
              d = 2, rule.reg = "AND", rule.cat = "OR")
```

?mgmfit

R-package **mgm**: Output

Output:

> fit \$adj							
. ,	[,1]	[,2]	[,3]	[,4]	[,5	5]	
[1,]	0	1	0	0		0	
[2,]	1	0	0	0		0	
[3,]	0	0	0	0		0	
[4,]	0	0	0	0		1	
[5,]	0	0	0	1		0	
\$wadj							
	[,1]		[,2]		,3]	[,4]	[,5]
[1,]	0.000	0000 (0.1778	09	0	0.000000	0.0000000
[2,]	0.177809		0.000000		0	0.000000	0.0000000
[3,]	0.000	0000	0.000	00	0	0.000000	0.0000000
[4,]	0.000000		0.000000		0	0.000000	0.7687597
[5,]	0.000	0000 (0.000	000	0	0.7687597	0.000000

?mgmfit

R-package **mgm**: Visualize

Output:

library(qgraph)
qgraph(fit\$wadj)

Summary

- 1. First "principled" method to estimate mixed Markov random fields
- 2. Performance measures: works in practical situations
- 3. R-package implementation: mgm

Contact:

jonashaslbeck@gmail.com
https://github.com/jmbh

Backup slides

Does proper modeling matter?

Ising-Gaussian: Rewrite conditional Gaussian (1)

$$P(X_s|X_{\backslash s}) \propto \exp\left\{\frac{\theta_s^y}{\sigma_s}Y_s + \sum_{t \in N(s)_Y} \frac{\theta_{st}^{yy}}{\sigma_s \sigma_t}Y_sY_t + \sum_{r \in N(s)_Z} \frac{\theta_{sr}^{yz}}{\sigma_s}Y_sZ_r - \frac{Y_s^2}{2\sigma_s^2}\right\}$$

If we let $\sigma = 1$ and factor out Y_s , we get:

$$P(X_s|X_{\backslash s}) \propto \exp\left\{Y_s(\theta_s^y + \sum_{t \in N(s)_Y} \theta_{st}^{yy} Y_t + \sum_{r \in N(s)_Z} \theta_{sr}^{yz} Z_r) - \frac{Y_s^2}{2}\right\}$$

Ising-Gaussian: Rewrite conditional Gaussian (2)

Now, if we let $\mu_s = \theta_s^y + \sum_{t \in N(s)_Y} \theta_{st}^{yy} Y_t + \sum_{r \in N(s)_Z} \theta_{sr}^{yz} Z_r$, we have

$$P(X_s|X_{\setminus s}) = \exp\left\{X_s\mu_s + \frac{X_s^2}{2} - \Phi(X_{\setminus s})\right\},\$$

where $\Phi(X_{\setminus s}) = \log(\sqrt{2\pi}e^{-\frac{\mu_s^2}{2}})$. Taking $\frac{\mu_s^2}{2}$ out of the log normalization constant, with basic algebra we arrive at the well-known form of the univariate Gaussian distribution with unit variance:

$$P(X_s|X_{\setminus s}) = rac{1}{\sqrt{2\pi}} \expig\{-rac{(X_s-\mu_s)^2}{2}ig\}$$

All results: Categorical

All results: Mixed

