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Depression as a latent variable
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But all we observed were 
correlations..
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LV models vs Networks
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What underlies the correlations we observe? 

Is it possible to determine whether correlations reflect a common factor 
or direct relations in a network?

In some cases it is possible to experimentally intervene.
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Partial correlations



Goal: Determine the underlying data generating model

• 2 implications of factor models for partial correlations

 2 tests:  pcor zero-test & pcor increase-test

 Performance of tests

• Conclusion and difference between tests

Factor models and partial correlations



Unidimensional Factor models imply:

1. that the partial correlations between two manifest 
variables cannot be zero (Holland & Rosenbaum, 1986).

Test 1: pcor zero-test
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𝜌𝑥𝑦= 𝜆1*𝜆2
𝜌𝑥𝑧= 𝜆1*𝜆3
𝜌𝑦𝑧= 𝜆2*𝜆3

𝜌𝑥𝑦 − 𝜌𝑦𝑧𝜌𝑥𝑧 = (𝜆1*𝜆2) − (𝜆1*𝜆3*𝜆2*𝜆3)

=(𝜆1*𝜆2) − (𝜆1*𝜆2)*𝜆3*𝜆3
𝜌𝑥𝑦.𝑧 = 0 iff 𝜆3= 1 or -1

So, for partial correlations to be zero at least 
one of the variables partialled out should 
have a factor loading of 1 or -1.

Test 1: pcor zero-test
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Recap in words:

1. Estimate a one-factor model (with Lavaan) and a  graphical lasso (gLasso) 
network based on the Extended BIC (EBIC) (with qgraph).

2. Simulate multiple datasets* according to both estimated models and 
calculate the proportion significant partial correlations.

3. Use these proportions to make two density plots; one for the one-factor 
model and one for the network model.

4. Does the proportion significant  partial correlations in the data have a higher 
density in the PDF of the one-factor model or the network model?

*equal N as in data!
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Results 1 : Factor model
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• True model = Factor 
model
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• 𝜆 ~ U(.1 , .9)
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Results 1 : Factor model
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• True model = network
• N= 10.000
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Results 1 : Network model



Results 1

How often does this test choose the right model?
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Unidimensional Factor models imply:

1. that the partial correlations between two manifest 
variables cannot be zero (Holland & Rosenbaum, 1986).

Test 2: pcor increase-test



Unidimensional Factor models imply:

1. that the partial correlations between two manifest 
variables cannot be zero (Holland & Rosenbaum, 1986).

2. that the partial correlations are always weaker than the 
corresponding simple correlations.

Test 2: pcor increase-test



Test 2: pcor increase-test

𝜌12= 𝜆1 × 𝜆2
𝜌13= 𝜆1 × 𝜆3
𝜌23= 𝜆2 × 𝜆3

One of the correlations has to be negative to 
get stronger partial correlation than 
corresponding simple correlations.

This is not possible for a one factor model.
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Test 2: pcor increase-test
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Test 2: pcor increase-test
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Test 2: pcor increase-test

One-Factor model : 0 Network model: 17

Partial Correlations
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Results 1
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Results 1

How often does this test choose the right model?

73.2% (N=1000)
12.4% no model

88.4% (N=1000)
0.5% no model
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Conclusion

Two tests that decide whether a certain property* of the sample 
partial correlation matrix has a higher probability density under a 
factor model or under a network model.

*
1. proportion partial correlations significant
2. proportion partial correlations stronger than the corresponding 

simple correlations

Test 1 distinguishes between sparse networks and factor models.
Test 2 distinguishes between networks and factor models that
imply some negative correlations.
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Disclaimer
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To distinguish between these models I assume that these models 
are not merely statistical models but causal models that generate 
the data and are therefore able to explain the correlational 
structure of the data.


