[Latent Variable and Network Model
Implications for

Partial Correlation Structures

Riet van Bork

University of Amsterdam



The latent variable model

e

They share variance

manifest variable

1

manifest variable

2

manifest variable 3

manifest variable 4




The latent variable model

Latent variable

This
shared
variance
Is a

reflection
~ oftheir
° common

cause.

manifest variable 1 manifest variable 2 manifest variable 3 manifest variable 4 —




Depression as a latent variable
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But all we observed were
correlations. .
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What underlies the correlations we observe?

[s it possible to determine whether correlations reflect a common factor
or direct relations in a network?

In some cases it is possible to experimentally intervene.
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Factor models and partial correlations

Goal: Determine the underlying data generating model

* 2 implications of factor models for partial correlations
= 2 tests: pcor zero-test & pcor increase-test
* Performance of tests

 Conclusion and difference between tests




Test 1: pcor zero-test

Unidimensional Factor models imply:

1. that the partial correlations between two manifest
variables cannot be zero (Holland & Rosenbaum, 1986).




Test 1: pcor zero-test
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Test 1: pcor zero-test

— b3
Pxy — PyzPxz Pry=Mh"4y
Pxy.z = Pxz= 1% A3
Ja=raa -2 Dya= 22"

Pxy — PyzPxz = (A1%42) — (A1™43%A,%A3)
=(A1%13) — (A1 42)% 3743

Pryz = 0iff A3=1 or -1

So, for partial correlations to be zero at least
one of the variables partialled out should
have a factor loading of 1 or -1.
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Recap in words:

1. Estimate a one-factor model (with Lavaan) and a graphical lasso (gLasso)
network based on the Extended BIC (EBIC) (with ggraph).

2. Simulate multiple datasets* according to both estimated models and
calculate the proportion significant partial correlations.

3. Use these proportions to make two density plots; one for the one-factor
model and one for the network model.

4. Does the proportion significant partial correlations in the data have a higher
density in the PDF of the one-factor model or the network model?

*equal N as in data!
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Results 1 : Factor model
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Results 1 : Factor model
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Results 1 : Factor model

True model = Factor
model
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Results 1 : Network model

True model = network
N=1000
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Results 1 : Network model
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Results 1 : Network model
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Results 1

How often does this test choose the right model?
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Test 2: pcor increase-test

Unidimensional Factor models imply:

1. that the partial correlations between two manifest
variables cannot be zero (Holland & Rosenbaum, 1986).




Test 2: pcor increase-test

Unidimensional Factor models imply:

2. that the partial correlations are always weaker than the
corresponding simple correlations.




Test 2: pcor increase-test
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Depression . .
One of the correlations has to be negative to

get stronger partial correlation than
corresponding simple correlations.

This is not possible for a one factor model.
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Test 2: pcor increase-test
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Test 2: pcor increase-test
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Results 2 : Factor model
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Results 2 : Factor model
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Results 2 : Network model
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Results 2 : Network model
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Results 1

How often does this test choose the right model?
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Results 1

How often does this test choose the right model?
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Performance
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Conclusion

Two tests that decide whether a certain property™* of the sample
partial correlation matrix has a higher probability density under a
factor model or under a network model.

X

1. proportion partial correlations significant
2. proportion partial correlations stronger than the corresponding
simple correlations

Test 1 distinguishes between sparse networks and factor models.
Test 2 distinguishes between networks and factor models that
imply some negative correlations.
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Disclaimer

To distinguish between these models | assume that these models
are not merely statistical models but causal models that generate
the data and are therefore able to explain the correlational
structure of the data.




