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Abstract

It was recently shown how graphs can be used to provide descriptions of psychopathologies, where
symptoms of, say, depression, affect each other and certain configurations determine whether some-
one could fall into a sudden depression. To analyse changes over time and characterise possible
future behaviour is rather difficult for large graphs. We describe the dynamics of networks using
one-dimensional discrete time dynamical systems theory obtained from a mean field approach to (el-
ementary) probabilistic cellular automata (PCA). Often the mean field approach is used on a regular
graph (a grid or torus) where each node has the same number of edges and the same probability of
becoming active. We show that we can use variations of the mean field of the grid to describe the
dynamics of the PCA on a random and small-world graph. Bifurcation diagrams for the mean field
of the grid, random, and small-world graphs indicate possible phase transitions for certain parameter
settings. Extensive simulations indicate for different graph sizes (number of nodes) that the mean
field approximation is accurate. The mean field approach allows us to provide possible explanations
of ’jumping’ behaviour in depression.
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1 Introduction

In psychopathology sudden changes from ’normal’ to depressed moods can occur. Such
"discontinuities’ can be the result of a relatively small change in the environment or person.
Recently, mental disorders have been described as a network of interacting symptoms
(Borsboom et al., 2011} [van Borkulo ef al., 2014)), which provides a framework where
an explanation for such sudden changes in mood could be found. A mental disorder can
be viewed as a network of symptoms, each symptom influencing other symptoms. For
instance, lack of sleep during the night could lead to poor concentration during the day,
which in turn could lead to lack of sleep again by worrying that your job may be on
the line. Here we use this idea and model the dynamics of psychopathology networks as
probabilistic cellular automata. Then to analyse the dynamics we use a mean field approach
where each node is similar in behaviour to all others. We extend known results for the mean
field approach in this context to other types of graphs (random and small-world graphs),
where the mean field can be interpreted as a weighted average of all nodes in the graph. We
also give concentration inequalities for approximations using variations of the grid mean
field.

Cellular automata are discrete dynamical systems that have deterministic, local rules
to move from one generation to the next (Wolfram, 1984a; Sarkar, 2000). Introduced by
Neumann (1951)), the most famous version is Conways game of life, popularised by Gard-
ner (1970), and has found many applications from computer science (Wolfram, 1984b)
to neuronal population modelling (Kozma et al., 2005) to epdemiology (Kleczkowski &
Grenfell, 1999)). In a cellular automaton each cell or node in a finite grid (usually a subset
of Z?) can be "active’ or ’inactive’ (1 or 0) and if, for instance, two (direct) neighbours are
active, then the node will become active at the next time step. Another example of a cellular
automaton is bootstrap percolation, where each node can only become active and cannot
be inactivated by its neighbours, and the objective is to determine the initial configuration
of active nodes that result in all nodes being active (Janson et al., 2012)). In general, a new
generation in a cellular automaton is determined by a local and homogeneous update rule
¢. For each node x in the graph this induces a sequence of states, an orbit. A (random)
configuration at time O then determines whether all nodes in the network will be active,
inactive, or whether the network will demonstrate periodic behaviour. A generalisation of
a cellular automaton is to introduce a probability py to decide whether or not a node will
become active or not determined by a node’s neighbours. One such rule is the majority rule
which gives the probability to switch depending on whether the majority of its neighbours
are active. Such a system is called a probabilistic cellular automaton (PCA). Here we will
investigate the dynamic behaviour of the proportion of active nodes (density) for PCA with
a majority rule that are defined on toroidal, random and small-world graphs.

Many versions of PCA exist and of particular interest are those that behave similar to the
Ising network. The reason is that the Ising network is often used to model realistic phenom-
ena, like magnetisation (Kindermann ez al., 1980;|Sethna et al., 2004) or psychopathologies
(van Borkulo et al., 2014). We have in mind the application to psychopathology here. In
such systems the symptoms of disorders are the nodes in the graph and edges between the
symptoms are estimated from data using the Ising mdoel (van Borkulo et al., 2014) or from
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verbal accounts. In our companion paper in this issue we elaborate on real data analysis
using results from discrete Markov chains.

Watts (1999) showed that a one-dimensional, large-scale cellular automaton (determin-
istic) where the connectivity between nodes was arranged as a small-world, could perform
the density (all zeroes) and synchronisation (alternating all zeroes and all ones) tasks. New-
man and Watts (1999) gave approximations for path length and clustering on a small-world,
to obtain an analytic solution to the threshold above which a large number of nodes are
active. Callaway et al. (2000) also studied percolation in different graph topologies in deter,
focussing on the consequences of (randomly) deleting nodes. Here again the objective was
to concentrate on stable solutions of the graphs. In a probabilistic version, Tomassini et al.
(20035) investigated a one-dimensional PCA on a regular and small-world graph in terms
of its performance on the density and synchronisation tasks. They determined by using
evolutionary algorithms that a small-world topology is most efficient to solving both tasks,
corresponding to the results of Watts (1999) in a deterministic version. Their objective was
different from ours in that here we are interested in all types of dynamic behaviour (stable
or not), and specifically representing this behaviour for the PCA by the mean field.

Our starting point is the work by Balister et al. (2006) and Kozma et al. (2005) where
a two-dimensional (toroidal) grid on a PCA is defined. The mean field is then used to
determine the unconditional probability distribution of the density (relative number of
active nodes). Balister et al. (2006) show that the mean field model predicts a bifurcation
for small values of the probability of a node switching to another state and determine its
critical point for a neighbourhood of size five (Kozma et al., 2004; [Kozma et al., 2005)).
This is of particular interest in our case as it may explain mood disorders (e.g., depression
or manic-depression) from symptoms and their connectivity. To apply these results to
random and small-world graphs we use a similar approach as described in Vespignani
(2012) and Pastor-Satorras et al. (2015) and Janson et al. (2015), where the marginal
distribution is obtained across the possible degree probabilities given the topology of the
random or small-world graph. Extending results of homogeneous graphs has been applied
to social networks (Vespignani, 2012), epidemiology (Barrat ef al., 2008)), and to cellular
automata (Janson ef al., 2015)). We use an extended version of the mean field for the grid
as an approximation to the mean field of random and small-world graphs, and obtain an
upper bound on the approximation. These results are verified by extensive simulations.

We first introduce probabilistic cellular automata in Section 2| Then in Section [3| we
show how the traditional version of a PCA on a grid can be reduced to a single discrete
time dynamical system, called the mean field. In Section [3.2] we show that for the random
graph we can use a variation on the formulation for the grid of the dynamical system to
describe dynamics. We use these results on the random graph to show in Section[3.3]that we
can obtain a similar approximation for the small-world graph, again using the formulation
for the grid. Having shown that these approximations are appropriate, we see in Section [4]
what the dynamics of the process is for the different topologies. These theoretical results
are followed by extensive simulations to verify the accuracy of the mean field in Section[3]
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2 Probabilistic cellular automata

A cellular automaton is a dynamical system of nodes in a fixed, finite grid where directly
connected nodes determine the state of a node at each subsequent time step (Wolfram,
1984b). Each node x in a node set V = {1,2,...,n} is at time ¢ in one of the states of a
finite alphabet X. The nearest neighbours in the graph G = (V, E) are given by the edges in
E. Often the graph G is the square lattice Z2, where each node has exactly four neighbours,
see, e.g., Grimmett (2010). A local rule determines based on the direct neighbours what
the value of the alphabet of node x € V will be at time ¢ + 1. Let the neighbourhood of x
be the set of nodes that are directly connected to x, I'(x) = {y € V : (x,y) € E}. A local
rule ¢ : I' = X assigns to each configuration of the neighbourhood of x a value a € X. If we
additionally introduce a probability for each local configuration ¢, we obtain a probabilistic
cellular automaton (PCA). The probability is a function p, : sy — [0,1] such that a
probability is assigned to each node x to have label a for a configuration ¢ dependent on
the neighbourhood I'(x), with ¥,y p, = 1. The local rule ¢ is applied iteratively to each
result, and hence induces a stochastic process with sequence &, : V — X for each time step
t. For node x € V we write ®;(x) = ¢’ (x0), where xg is the value at time t = 0, and P, (V)
is the image for all nodes simultaneously. Each node therefore has an orbit (Hirsch et al.,
2004)), which is the sequence (D;(x),t > 0) = (xo, ¢ (x0), 9 (¢ (x0)),--.).

Example 1 (Majority rule on a grid) Let the alphabet be £ = {0, 1} and take a finite subset
of the square lattice V C Z?. In this lattice V each node has 4 (nearest) neighbours. We use
the majority rule, which says that if |¢.'(1)| = |{y € T'(x) : ®;(y) = 1}| is greater than 2,
then the node x will be 1 with probability 1 — p, and otherwise 0 with probability p. The
sequence (®;(x),t > 0) is any orbit of Os and 1s (0,1,1,...).

In Example |1| the probability p determined by the neighbourhood I'(x) is independent
of the state of the node x itself. Such a model is called rotalisitc (Balister et al., 2006).
Additionally, the probabilities for 0 and 1 were defined by the same parameter p, which is
then called symmetric, i.e., py = 1 — pg. Here we focus on totalistic and symmetric models
with size 2 alphabet X = {0, 1}.

3 Mean field approximation on graphs

The key ingredient of the mean field approximation, shown by Balister et al. (2006)), is that
the properties of interest are uniform over the graph. For the (toroidal) grid topology this is
easy to see: Any node x € V has the same number of neighbours |I'| = 4, where each node
in the neighbourhood becomes O or 1 by the same local rule. It follows that any four nodes
in the grid could serve as part of the neighbourhood for x. In a probabilistic automaton,
therefore, the local rule depends only on the number of 1s in any random draw of 4 nodes
from all nodes V. We first consider the case for a grid and then move onto the random and
small-world graph.
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3.1 Mean field on a grid

Let the graph Ggrig(n,I") be a grid with n nodes and boundary conditions such that each
node has exactly four neighbours. We consider the density p; defined by |®; ! (1)|/n, where
the set of nodes that are 1 is ®; (1) = {y € V : ¢’ (y) = 1}. It follows that we require the
probability of {®,(x) = 1} given a certain number of nodes in state 1 at the previous time
point. The probability of switching to state 1, éll"l (r), is conditional on r of the neighbours
that are 1. Let [¢~1(1)| = [{y € T: ¢(y) = 1}| be the number of Is in the neighbourhood
of x. Then we define the probability of state 1 given that r neighbours are 1 as

Ery(r) =P(®,(0) =1 ]|~ (1)| =1r). M

One of the possibilities to define ém is the majority rule: if the majority of neighbours in
I" are 1, then the node will be 1 with probability 1 — p at r + 1. The majority rule is defined

as
p if r <|T7/2
= 2
sni) {l—p it > |1]/2. @

To obtain the probability of ®,(x) = 1, the state of x being in state 1, we need to determine
the probability of a neighbourhood having r active nodes. In the mean field we have that
the probability of a 1 is homogeneous and so we obtain a binomial distribution for the
number of 1s in the neighbourhood I'. The probability that the number of nodes in the
neighbourhood equals r is in the mean field the same as |I'| Bernoulli trials each with
probability of success p;. Hence

B(lo~"(1)] = r| pi) = ( )p:(l—p,)” 3

where r =0,1,...,|I'|. Then the probability of the event {®,(x) =1 | p,}, that node x will
have state 1 at time ¢ 4 1 given the density p; at time ¢, is

T
-

|
puatp) =X &) (1 )or1 - pff @
r=0

r

Combining this probability with the majority rule (2)) gives
/2 | - T1/2 | -
Peia(P) =p Y, (,)p,’(l—pt) | ’+(1—p)<1— ) <r>PZ(1—pz) | )

r=0 r=0
which is used in Kozma et al. (2005)). This mean field result follows directly from Theorem
2.1 in Balister et al. (2006)). Let B(n, p) denote a binomial random variable with n Bernoulli
trials each with success probability p.

Lemma 2 (Balister et al., 2000) Let Ggriq(n,I") be a grid with a PCA as defined above
with ém(r) according to the majority rule in @ Then the evolution of the number of
active nodes np; is

npr+1 = B(n, peria(pr))- %)
The mean and variance for the density p,, respectively, lgiq = Pgrid and O'gZrid = pgrid(l —
pgrid)/n'
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It follows that the conditional probability of np;; active nodes in the grid on {np, = k} at
the previous time step is

B(nprst = r | npy = k) = (”) paria(pr) (1~ pasa )" ©)

It is easily seen that this is a discrete time Markov process on a finite state space of size n,
since the probability of np;;1 depends only on p;. Equation (6)) is the transition probability
of the discrete time Markov process for the number of active nodes in the graph.

Because ¢ (x) is Bernoulli distributed B(1, pgria(p;)) for all nodes x € V, and the number
of active nodes |®~!(1)] is the sum of these Bernoulli trials, we can apply the law of large
numbers so that for large n, p;+1 is close to i, := p(p,) with high probability. Indeed, we
can use Chernov’s bound to suggest that using pgig is good enough for large graphs.

Lemma 3 (Accuracy bound of density) Let np; =Y .cy @' (x) be the sum of n Bernoulli
trials given by , with mean of the density peria(p;). For every 0 < € < min{pgriq, 1 —
Perid }» let & = 26Xp(—82/26g2rid). We then have with probability at least 1 — O

rid (1 — Pri
|p _pgrid| < \/pgd(npgd)ZIOg(Z/S) @)

A proof is in the Appendix. So we can use the mean field pgiq(p;) for grids of large
size n. With 6 = 0.05, we obtain the interval with probability at least 0.95 of [/,Lgrid —
2.720gsid, Merid — 2.720gri4]. Another interval can be obtained from the DeMoivre-Laplace
central limit theorem. This theorem tells us that for large enough 1, Zgria = (0; — Perid) / Oerid
is distributed as N (0, 1). In fact, if the third order moment of zgiq is ¢ < oo, the Berry-Esseen
theorem says that the order of approximation of the distribution of p; to the normal dis-
tribution is O(3¢/+/n) (Venkatesh, 2013). This provides an interval for p;;| as a measure
of accuracy with [fgrig — 1.96Cgrid, Herid + 1.960iq] with probability 0.95. Clearly, in both
limit laws the size of the network n determines the accuracy of the approximation.

3.2 Mean field on a random graph

In the original setting of a grid (with boundary conditions, so a torus) the number of
neighbours is fixed and it was seen that the mean field approximation pgrg was accurate
for the density because each node is identical with respect to a change depending on its
neighbours. Here we introduce the neighbourhood size |I'| as a random variable and then
determine the probability of ®,(x) = 1 given p, by averaging over all possible sizes of
neighbourhoods weighted by its probability for neighbourhood size (Barrat ef al., 2008}
Vespignani, 2012; Janson ef al., 2015). This is done in a random graph where each node
has a binomial number of neighbours. Let Gg(n, p.) be a random graph with n nodes and
(constant) probability p, of an edge being present (Bollobas, 2001} Durrett, 2007)). Let the
size of the neighbourhood |I'| be a binomial random variable with maximal value n — 1
neighbours and probability p,, that is, B(n — 1, p,). Then the probability of obtaining an
active node can be defined conditionally on the event {|T'| = k}, the neighbourhood having
size k. Then marginalising over the possible the neighbourhood size, we obtain pr, for
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the probability of a node being active in the binomial process. Proofs can be found in the
Appendix.

Lemma 4 (Probability on a random graph) Consider a PCA on a random graph G (n, p.)
with edge probability p, and a local rule ¢ determined by the majority rule for the neigh-
bourhood |T'| = k according to & as in . Then the probability of obtaining an active
node at time t + 1 is

Pre(Pr) nZliék () —p) (";l)pﬂl—pe)"". ®)

Intuitively we would expect that if we restrict the neighbourhoods in (§) to the expected
neighbourhood size p,(n — 1) for each node, then the approximation should be reasonably
close. This would make it possible to analytically determine fixed points more easily and
simplify computation for large graphs considerably. We next show that this is a reasonable
approach.

Lemma 5 (Simple probability on a random graph) If the neighbourhood in Gg(n, p.) of
each node in a PCA as in Lemma [\ is fixed with the expected number of nodes under the
random graph v = | p.(n—1)] such that k =V in pgq, then the probability p reduces to

Peria(P1) = Zév () ) (1=p)" " ©)

The approximation error is

|Pre — Pysial < |p—1/2|2exp(—(n—1)&/p.(1 - p.) +log(n))

as € decreases to 0 and with 0 < p, < 1.

This implies of course that the number of active nodes np, in the random graph with
probability py in (8) and the number of active nodes with probability pé’rid in (ﬂ) converge
in probability with exponential rate with graph size n.

Remark To retain a probability of an edge in p‘g’rid leads to a larger approximation error,
i.e., using

—1
Phsia (P1) Ziv < . >(Pzpe)’(1pzpe)""‘1 (10)

leads to an error of at most |p — 1 / 2|, which makes it non ignorable (see the Appendix).

We now have expression (9) similar to (@) for a random graph with the probability of an
active node at time ¢ determined by both the density p; and an edge being present p, in
the size of the neighbourhood. From () in Lemma @] and Corollary 2] and Lemma [3] the
evolution equation for the random graph follows.
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Figure 1: The expectation py, (blue, solid curve) of equation and purana (red, dotted
curve) of equation (9) with p = 0.1 and p, = 0.3. Left panel shows the curves for a graph
of size n = 25, showing a clear difference between the curves, and the right panel for graph
size n = 100. Note that the difference between the curves at the crossings with the 45° line
is small.

Theorem 7 (Evolution on a random graph) Let a PCA with local rule ¢ be defined on a
random graph Gyg(n, p.), and let the probability of obtaining an active node in Gy (n, pe)
be pg‘g/rid as defined in (I?I) Then the evolution equation for the random graph with large n is

nPr1 = B(n, pyia(pr))- an

The mean and variance of the density p; respectively, [,Lg"rid = p‘g/rid and ngrid,v = pé’rid(l —
v
p grid) / n.

We immediately have that the probability pé’rid is close to the density p for each time point
t for large graph size n. In fact, we find by the triangle inequality

P — Parial < 1P = Prel + | Prg — Pgridl

and both terms converge to 0. The first term |p — py,| converges to 0 by Lemmawith Prg
and using Lemma and |prg — pf‘;’rid| converges to 0 by Lemma

The process np; on arandom graph is also a discrete time Markov process, as before, and
has transition probability (@) with pf‘;’rid. We can then apply a similar analysis of dynamics
to “grid = pé’rid as before.

Note that we require for obvious reasons that the graph is connected. It follows that we
need a minimum probability p, such that the graph is connected. The probability that a
random graph G, is connected is exp(—exp(—A4)), where p, = (logn+A +o(1))/n with
A fixed (see Bollobas (2001), Theorem 7.3). For instance, if we choose the probability of
Gig being connected to be 0.99 and we use n = 50, then we obtain A = 4.6 and hence
pe = 0.17. We can therefore not go below 0.17 for a graph with n = 50 nodes.
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3.3 Small-world graph

A small-world graph is one which has high average clustering and low average path length,
relative to a random graph with the same number of nodes and edges. These graphs have
been shown to model realistic networks like those of working relations between actors and
the nerve cells in the worm C. elegans (Watts & Strogatz, 1998)), and subsequently the
small-world has been shown to apply to many different networks, like the (parcellated)
brain (Sporns & Honey, 2006). And most recently, the network of symptoms as defined by
the diagnostic statistical manual (a compendium to diagnose patients) has been found to be
a small-world. This finding is a possible explanation for the correlations between pairs of
symptoms found in different subpopulations (Borsboom ef al., 2011)).

Here we use the modified Newman-Watts (NW) small-world of Newman and Watts
(1999)), where for a given grid structure where each node has neighbourhood I, a set of
(n—1)p,, edges is on average independently added to the graph, where p,, is the probability
of two nodes being wired. Such a graph is denoted by Gy (n,I", py). The same idea as
with the random graph, where the probability for an active node was corrected by the
probability of the degree of a node, averaged over all possible neighbourhood sizes, can
be used for the random part in the NW small-world. In the NW small-world we start with
a grid with neighbourhood size |I'|, which is fixed, and augment the graph randomly with
edges according to a binomial variable with probability p,,. We then obtain

n—1 k—|T|
pulo) = ¥ Y & ()ora—po (", ottt
k=[T| r

We could define the small-world probability using this definition. But we can split up
Psw 1 two terms, one involving the fixed neighbourhood I' of the grid, and one random
neighbourhood consisting of the possible shortcuts. We therefore start with the probability
in a grid pgrig corrected by the (1 — pw)" Tl requiring that no possible randomly added
edges are present, i.e., we obtain

Piva = Peria(1—py)" (13)

for the first part of the fixed grid. Then, in accordance with the random part of the NW
small-world, a probability is added to emulate the possible additional neighbours in the
random part of the graph, ignoring the first |I'| neighbours from the grid. Define the
probability

Prer(pr) = Z] kZmék <> —p)* ("zl)p’;(l—pe)”"“1 (14)

k=[[]+1 r=
where the first || neighbours are ignored since they were included already as neighbours
in the grid structure in pzvrvid. Then we can write the small-world probability as pgy =

pgrid(l — pw)”_m + prgr- For the second part, however, we have the approximation as
before from the random graph, leaving out the first I" nodes from the grid. This leads to the
simplification using the grid probability only

Periar(pr) = Z &v(r) () (p)" (1=pr)"™" (15)

r=|T|+1
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where v = | p,(n — [T'[) |. The error of approximation using py, - instead of prg - follows
immediately from Lemmal 3] for fixed grid neighbourhood I', except that the first || nodes
in the grid are taken out.

Corollary 8 Let Goy(n,T, p,y) be the NW small-world graph of size n with |U| nodes in the
fixed neighbourhood for each node. Furthermore, let 0 < p,, < 1 be the wiring probability
and v = | py(n—|T|)|. Then the approximation error for the probability using the grid
structure pgrid in in the random part is

|Prer = Pyriar| < [p—1/2[2exp(—(n— T1)€*/pw(1 — pw) +log(n — T[] +1))
fore>0.

Equations (12) to and Corollary [8| prove the following equation for the evolution on
an NW small-world.

Theorem 9 (Evolution on a small-world) Define a PCA on a Newman-Watts small-world
graph Gy, of size n with |U| neighbours for the initial graph and wiring probability p,.
Then with probabilities p;‘gd in and pé’rid?r in , the evolution of the number of
active nodes is

npr+1 = B(|T|, pgia(pr)) + B(n— [T, pgriq.r(pr)) (16)
with mean and variance for the density p;, respectively,
I n—|T]
Msw = %P;‘:{d + | Paridr a7
and
2 _ T n—|T|
Ogw = nTPZVrVid(l — Pria) + TP‘g/rid,l"(l ~ Peridr)- (18)

We write p§, = parg(ILl/n) + pgiqr((n — |I()/n) for the NW small-world probability
based on the approximation with the grid. Figure 2] shows two examples of the approxima-
tion pg,q - for the random part in the NW small-world. It is clear from the corollary that
convergence is a bit slow for small graphs since the difference of nodes in the fixed neigh-
bourhood I and in the expected p,,(n — |['|) neighbours in the random part, determines the
rate. Again, we can use py,, to determine the dynamics of the mean field.

4 Dynamics of the mean field

To investigate the dynamics we treat the mean field function pyiq for the grid, p‘g/rid for the
random graph, and ps,, for the NW small-world as a discrete dynamical system. We can
then determine in principle the fixed points and describe its behaviour in the long term.
In general, however, obtaining the fixed points is not trivial. Indeed, Balister et al. (2006
provide an analytical solution for the fixed points for a specific case in Ggig, but mention
that a general solution is difficult. Janson et al. (2015)) give analytical solutions for the fixed
points when leaving out the majority rule, making it a deterministic system. Here we keep
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Figure 2: The expectation pg, (blue, solid curve) of equation (2?) and pY, (red, dotted
curve) of equation (9) with p = 0.1 and p,, = 0.3. Left panel shows the curves for a graph
of size n = 25, showing a clear difference between the curves, and the right panel for graph
size n = 100. Note that the difference between the curves at the crossings with the 45° line
is small.

the majority rule sacrificing the possibility of determining the critical points analytically.
We therefore describe the qualitative behaviour of pg;ig, p;ﬁ g and pey.

4.1 Dynamics of the mean field in a grid

The dynamics of the mean field in the grid Gg g from (FH) have been described in Balister
et al. (2006) and Kozma et al. (2005) for a neighbourhood size of |I'| = 5. The function
Hgrid = Pgrid 1 continuous and since [0,1] is closed and bounded, we find that Ugrig has at
least one fixed point in [0, 1] (Holmgren, 1996 Hirsch er al., 2004). A fixed point is one
where we find pgig (p:) = p;. Finding the fixed points for Dgrid in general is not trivial.
Balister et al. (2006) showed that if || = 5 in the finite grid, then p =7/30 ~ 0.233 is a
critical point, such that if p is in [7/30,1/2] then there is a stable fixed point at p = 0.5,
but when p < 7/30 then p = 0.5 is unstable and there are two other stable fixed points.
This can be seen in Figure [3] which shows two bifurcation plots, where for each value
of 0 < p < 0.5 the function Ugrig = Pgrid 18 iteratively applied for about 1000 steps, and
only the last 50 are plotted. Figure [3| shows that for || = 5 neighbours the fixed point
at is stable for p € [0,7/30) and bistable for p € [7/30,0.5], as predicted. Since pgriq is
continuous, stability can be checked by considering the derivative dgria/dp = flgriq. If
|tgria| is bounded by 1, then the fixed point p is attractive, otherwise it is repellent (Hirsch:
et al., 2004). The derivative with respect to p; is

I
fsatp) = X &) () tr—pdrDpr 11—,
r=0

For example, the derivative for p = 0.15 is not bounded by 1 for all values of p; the fixed
point p = 0.5 is repellent since at this point [1(0.5) a2 1.359, and so iteration of y will lead
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away from 0.5. The derivative for p = 0.35 is smaller than 1 (0.672) and so in this case
p = 0.5 is an attractive fixed point. It can be seen that for |['| =5 the critical point is at
0.233, as predicted by theory (Balister et al., 2006)). It can also be seen that increasing the
neighbourhood size to |T'| = 15 (right panel) increases the critical point. This increase in
critical point corresponds to the simulations in Kozma et al. (2005) where (’long range’)
edges were added to the nodes, which increased the neighbourhood size.

4.2 Dynamics of the mean field in a random graph

The dynamics of p;rid in the random graph Gy, are similar to that of the grid. The main
difference is that the critical point of the bifurcation is closer to p = 1/2. This is in line
with the account of Balister et al. (2006) and Kozma et al. (2005)), where the symmetry of
the bistable area remained but the critical point for the bifurcation was translated upwards.
As is clear from the definition of p;’rid in @), the only difference with that of the grid
is the neighbourhood size which is increased to v = |p.(n — 1)]. Figure |4 shows the
result for a graph with n = 25 nodes (left panel) and for a graph with n = 100 nodes.
The approximation of p‘g’ri 4 18 quite accurate, also for the location of the critical point. With
a graph of size n = 100 the accuracy is such that p;g and pé’ri 4 are nearly indistinguishable,
which corresponds to the result in Lemma 5]

4.3 Dynamics of the mean field in a small-world

The dynamic behaviour of pgy is shown in Figure[5} Generally, the behaviour is similar to
that on the random graph. In Figure [3] the left panel shows a bifurcation plot of pg,, and
and pY,, on Ggy(49,0.4). The accuracy of p, improves greatly for larger n, as seen in the
right panel of Figure [5|for Gy (100,0.4). For low values of new edges in the NW small-
world p,,, the probability pg, is smaller than in the grid. This is because the probability
pfg‘g 4 = Peria(1— pw)”’m is corrected by the number of edges not added to the graph. For

e

1.0
1.0

w(p)

00 02 04 06 08
u(p)

00 02 04 06 08
1

Figure 3: Bifurcation plots of pgq in a graph of size n = 100 for |I'| = 5 and |I'| = 15
neighbours.
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Figure 4: Plots of p, (red) and ,ug’n-d (blue) as a function of p. In the left panel the
bifurcation plots are given for a random graph of size n = 25 and in the right panel for
a random graph of size n = 100. All plots are obtained with edge probability p, = 0.4.
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Figure 5: Bifurcation plots of the small-world mean field p), (p) based on the grid with
v = | p.(n—1)| neighbours (blue) and the mean field gy (p) based on the all possible
neighbours in the random graph (red). In the left panel a small-world of n = 25 nodes and
in the right panel a graph of n = 100 nodes; all graphs are obtained with the probability of
wiring (adding edges) in the NW small-world of p,, = 0.4.

larger n (right panel) this difference is much smaller, corresponding to the upper bound in
Corollary [§]

Here we see again the correspondence to Balister et al. (2006) and Kozma et al. (2005)),
where the critical point is moved upwards as a function of the size of the neighbourhood
in the function for the grid pgrid in @), which features in the small-world function pY, in

(13).
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5 Numerical evaluation of the mean field

As explained earlier, the mean field approximation assumes that each neighbourhood I"(x)
is equal for all x € V. In a random and small-world graph, this assumption is violated
as edges have a constant probability either to be drawn (random graph) or wired (small-
world graph). We approximated the probability for the graphs by summing over all pos-
sible neighbourhood sizes, and thus obtaining a weighted average across the nodes. We
investigated the effect of violating the assumption of invariance of having the same degree
across the nodes by performing a simulation study, in which the accuracy of the mean field
approximation in these different graphs is evaluated. To determine the accuracy we used
both 90% and 95% confidence intervals obtained from the central limit theorem for each
of the three different graphs (see Section [3.1).

For each combination of parameters, 100 graphs were simulated in the topology of an
unweighted grid, a random graph, and a small-world graph. We varied the size of the
graph n € {16,25,49,100}, the number of time points 7' € {50, 100,200,500,5000}, and
the probability of an active node in the majority rule p € {0.1,0.2,...,0.5}, see . We
also varied the probability of an edge in the random graph p, € {0.1,0.2,...,0.9}, and
the probability of wiring in the small-world graph p,, € {0.1,0.2,...,0.9}. Fort =0, a
random number of nodes was set to active by using the R package IsingSampler version
0.2 (Epskamp, 2013). Figures[6|and [7]show the topology of some simulated random graphs
(6) and small-world graphs (7)) arranged in a square.

A selection of the results in bifurcation diagrams with 90% and 95% confidence intervals
are shown in Figure [§] All results, together with the simulated data and R-code, can
be found at the open science framework (Asante et al., 2016)). Mean density estimates,
visualized with red dots, were calculated by dividing each simulation into snippets in which
the distance between density estimates (6) did not exceed 0.4. Other values for § were
considered, but it was found that changing d to 0.3 or 0.5 resulted in similar percentages.
We calculated for each snippet the percentage of mean density estimates that fell within a
90% and 95% confidence interval. Table E] shows these mean density estimates, obtained
from the central limit theorem with bounds p 4 1.96 for the 95% confidence interval, and
p +1.64 for the 90% confidence interval, for the results shown in Figure[8] The entire table
with all mean density estimates can be found in the supplementary materials. Figure[0]gives
a 3-dimensional representation of the percentage of mean density estimates that fall within
a 95% confidence interval. Results from the 90% confidence interval are not presented, as
these were similar to the results from the 95% confidence interval. It can be seen that the
mean field approximation accurately estimates the density of the network structures across
various simulation conditions.

As seen in Figure ] a local dip occurs for all network structures at p = 0.3 and becomes
more extreme as n increases in size. Also shown in Figure [§] the mean density estimates
at p = 0.3 fall less often in the 95% confidence interval in comparison to the mean density
estimates at other values for p. This is partly due to the fact that the standard error, a
parameter needed for the calculation of the confidence intervals, depends on the network
size; as the network size n increases, the standard error becomes smaller as well as the
resulting confidence interval. Furthermore, as this phenomenon occurs in all simulated
network structures, we believe that this behaviour results from the fact that the mean field
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Figure 6: Examples of simulated random graphs with network size n € {16,25,49,100}
and p, € {0.1,0.2,0.3,0.4,0.5}.

Pe=0.5

approximation has a bit of trouble adjusting to the one-phase stability, after being in an
area where phase transitions may occur. All in all, results show that the mean field approx-
imation also performs well when non-regular network structures are under consideration.
Figure [9] visualizes the evolution of selected simulation conditions. Phase transitions
were obtained for the random graph, specifically at p, = {0.3,0.4} and p = {0.3,0.4}. We
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Figure 7: Examples of simulated small-world graphs with network size n €
{16,25,49,100} and p,, € {0.1,0.2,0.3,0.4,0.5}.

also obtained phase transitions for the small-world graph at p,, = 0.9 and p = 0.1. For the
duration in our simulations, we did not obtain phase transitions in any other simulations.
However, as we observed stable chains throughout the simulation study, we expect to obtain
phase transitions in all conditions for larger ¢.



7U064-05-FPR

pca-arXiv October 18, 2016 0:39
Mean Field Dynamics of Graphs 1 17
t=50 t =500 t =5000
n=16 n=49 n =100
. . .
0.75— , 0.75— -.I 0.75— ,
¢ [T I .2 e o ¢ [
Torus e I b ] [k = ||P——
02575 |I H 0.25— |I 0.25— 'l
oz ) oz ) oz )
P P P
. . .
ol s ol I
Random = s e | ......... | 2 | ......... | = ) ' ..... |
graph nzs—i | | nzs—| _____ || S i iR
o] oz ) oz
P P P
. . .
I I e
small- T R e 2 s
world | 4 AT i o] g
graph (RS | NE

025 025 025

r T T T ! r T T T ! r T T T !
03 03 03

P P P

Figure 8: Bifurcation diagrams of a torus (upper panel), a random graph (middle panel;
pe = 0.5) and a small-world graph (lower panel; p,, = 0.5). Grey solid area = 90%
confidence interval around bifurcation. Dashed grey lines = 95% confidence interval
around bifurcation. Red dots = mean density estimates at different values of p.

6 Conclusions and discussion

To model the complex dynamics of large-scale graphs is in general difficult. This is because
there are many different ’agents’ that operate within the graph. In particular, if the nodes
in the graph represent symptoms and the edges represent their mutual influence, then
the interacting symptoms show complex behaviour on a macroscopic scale, e.g., at the
level of the number of active symptoms. Here we showed that the mean field model for a
probabilistic cellular automaton with majority rule, can serve as an accurate approximation
to such large-scale graphs, and can simplify analysis of the dynamics of such systems.
Specifically, we showed that averaging across the different possible degrees for a random
and small-world graph, results in approximations that lie with high probability close to the
mean field. These theoretical results were confirmed by extensive simulations, showing
that for smaller graphs the mean field lies within the 95% confidence interval.

Our approximation is based on the formulation of the grid (torus) where a relatively sim-
ple sum over possible active nodes determines the probability of a randomly selected node
in the graph being active. We showed that for large graphs this approximation is accurate.
This simplification could serve to obtain a more extensive analysis of the dynamics such
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Figure 9: Percentage of mean density estimates that fall within the 95% confidence interval

for the grid (torus; top row), the random graph (middle row), and small-world graph
(bottom row).

as that presented in Janson et al. (2015)). There the majority rule (the probabilistic element)
was removed from the model, to obtain exact fixed points for the model. Here we chose not
to remove the probabilistic element since we aim to introduce different rules for updates
than the majority rule, like a conditional Ising probability.

Our initial motivation for these results was to obtain a model where we could assess the
risk of a single person based on the estimate of the graph and the corresponding probability
of an active node p, to determine the risk of that person ’jumping’ from one state into
another. This risk assessment might be useful in a clinical setting where a decision in a

particular type of intervention is required. This idea is pursued in the companion paper of
the current issue of Network Science.

Appendix

Proof of Lemma

Let the Kullback-Leibler divergence between p + € and p be defined as a function of 0 <
E<p

p+E —p—E&

1
hi(e)=(p+e€)log +(1—p—e¢)log T
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Structure T N PelPw P 90%CI 95%Cl1
Torus 50 16 - 0.1 0.75 0.80

0.2 0.99 0.99

0.3 0.92 0.99

0.4 0.94 0.99

0.5 0.96 0.99

500 49 - 0.1 0.29 0.67
0.2 0.97 0.99

0.3 0.63 0.75

0.4 0.75 0.83

0.5 0.81 0.87

5000 100 @ - 0.1 0.12 0.55
0.2 1.00 1.00

0.3 0.50 0.50

0.4 0.75 0.83

0.5 0.75 0.75

Random graph 50 16 0.5 0.1 0.97 0.97
0.2 1.00 1.00

0.3 0.55 0.76

0.4 0.78 0.88

0.5 0.85 0.92

500 49 0.5 0.1 1.00 1.00
0.2 1.00 1.00

0.3 0.98 0.98

0.4 0.92 0.97

0.5 0.94 0.98

5000 100 0.5 0.1 1.00 1.00
0.2 1.00 1.00

0.3 0.87 0.91

0.4 0.98 1.00

0.5 0.99 1.00

Small world graph 50 16 0.5 0.1 0.34 0.76
0.2 0.20 0.43

0.3 0.38 0.59

0.4 0.54 0.69

0.5 0.63 0.75

500 49 0.5 0.1 1.00 1.00
0.2 1.00 1.00

0.3 1.00 1.00

0.4 0.98 0.99

0.5 0.99 1.00

5000 100 0.5 0.1 1.00 1.00
0.2 1.00 1.00

0.3 0.99 0.99

0.4 1.00 1.00

0.5 1.00 1.00

Table 1: Percentages of density estimates with a 90% or a 95% confidence interval. p, =
edge probability (random graph). p,, = rewiring probability (small-world graph).
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Figure 9: Examples of the evolution of a torus (upper panel; p = 0.1), a random graph
(middle panel; p = 0.3, p, = 0.6) and a small-world graph (lower panel; p =0.1, p,, =0.9).

and similarly, define h_(€) = h4(—€). Then Chernov’s bound (Lesigne, 2005; Venkatesh,
2013) for the density p; of a grid with n nodes and its mean at time #, pgiq (ps defined in
, for 0 < € < min{pgrid, | — peria} immediately gives

P(1p: — pasa(pr)| > €) < exp(—nh, (€)) +exp(—nh_(¢))

The Kullback-Leibler divergence can be approximated quadratically by
2

£ 3
hi(e)=——=+0(€) ase—0
+(€) (1 =p) (€)
Similarly for h_(g) gives
P(Ip — paria(pr)] > €) < 2exp(—€2/2024(p1)) (19)

where 0 = Pgrid(1 — Peria) /1. Let 8 =2exp(—€>/264,4(p1)) such that € = | /264,,10g(2/9).

g grid

Then we obtain the result with probability at least 1 — 6. [
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Proof of Lemma
By Theorem 2.1 in Balister et al. (2006) we have that the probability of state 1 at time ¢ + 1
on the event {|T'| = k} and given p; is

) = 1110~k = ¥ &) () or1 -t
and in the random graph of Erdos-Renyi the probability of k neighbours for any node is

r(ri =0 = (") ka1 pr

It follows that the marginal Y, P(®,(x) =1 | |T'| =k, p,)P(|'| = k) is

pre(pr) = Z Z Si(r ( ) pr(1—p)kr <n; l>ple<(1 ~pe )l

as claimed. ]

Proof of Equation[I0]
To obtain assume a fixed value v for all k, & = &, for all k. Then &, (r) only depends

on r. First note that
k\ /(n—1 _(n—=1\(n—-r—1
r k a r k—r

Second, by changing the order of summation and reordering the sums, we get

gévm (" 1>p,’pz"_fl ("o et pp = p

k=r

In the sum on the right we can use the binomial theorem withm =k—rand N =n—r—1,
which gives

N

% ()1 p "1 " = 1= p) 1= )"

m=0

which leads to (T0).
For the approximation error, write & (r) = p1{r <k/2}+ (1 —p)1{r > k/2} and recall
that v is fixed. Then

Prg (pt) _prand(pt) =
n—1 k k rey k—r n—1 ki n—k—1 P — r
Ty <r>pt(l o) (k )peu P E) — & (1)

Using Holder’s inequality with the ¢ and ¢; norms, gives

Z > ( ) D (”; ‘)pif(l =)' k() = &u ()]

=0r=0

SWA@ET p;)“(”; o= p ) -0
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The binomial theorem for the first term of the right hand side gives

zk‘() (];) pi(1=p) (n; 1>p'§(1 —pe)" !

=jZ (" B 1) (Pipe) (1= pipe)" " = 1.

-0 r

)y

n—1
k=

—_— O
3

For each r, k such that r < k we have that

E(r) —&v(r) =
p({r<k/2} =1{r<v/2})+ (1= p)(1{r > k/2} = 1{r > v/2})
The term |&(r) — &y (r)| is at most 2p — 1 if v < k or 1 —2p if v > k for any r,k, which
gives the size of the error bound. |

Proof of Lemma 3]
If we fix v =|p.(n—1)], the expectation of the random variable for each node of the
possible number of neighbours B(n— 1, p, ), such that each k = v in the part for the density

we obtain
(" a—pr (Z ()atrpr —p,yr) ,

k=0 r=0
from which we obtain pgrid (pr)- The approximation error for the probabilities is then

|Prg(Pr) = Prana(P1)| =

n—1 n—
¥ (Phialp) ~ Phaato) (") b1 = py !

k=0

The probability of obtaining a neighbourhood size k close to the expected number of
neighbours v = p,(n— 1) can be obtained from the Chernov bound in Lemma giving
P(lk—v|<t)>1—2exp(—(n—1)e*/p.(1—p.)), for € \, 0. This leads to the difference
being bound by

/;)(pgrid(pt) - Pgrid(Pr))ZeXP(_(” —1)&*/pe(1 - pe))

|Pre(Pr) = Prana(Pr)] <

n—1 ‘

Using Holder’s inequality with the sup and ¢; norms, we find that the above is

n—1

< max|pia(P1) = Pyria (P)] Y 2exp(—(n— 1)&?/pe(1 = pe)).
k=0

The difference p’érid (Pt) — Pgria(pr) is determined by the mismatch between k and v and is
atmost 2p—1if v <kand 1 —2p if v > k for any r,k. And so we obtain

|Pre(Pr) = Pyria(P)] < |p—1/2[2exp(—(n = 1)€*/pe(1 = pe) +log(n)),
completing the proof. [

Proof of Theorem(7]]
In the random graph G4 (n, p.) each node has the same number n — 1 of possible neigh-
bours. Hence, for each node the local rule ¢ is determined by r out of n — 1 possible
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neighbours being both connected and 1. Lemma [ shows that the probability of this bino-
mial process is then ps in . Then by Lemma for large n the probability pé’rid converges
to pre, and by consequence, the number of active nodes in both processes converges. [
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