EPILOGUE

The Art and Science of Cause and Effect

A public lecture delivered November 1996 as part of
the UCLA Faculty Research Lectureship Program

The topic of this lecture 15 causality — namely, our awareness of what causes what in the
world and why it matters.

Though 1t 1s basic to Intman thought, causality 15 a notion shrouded in mystery, con-
troversy, and caution, because scientists and philosophers have had difficulties defining
when one event truly causes another,

‘We all understand that the rooster s crow does not cause the sun to rise, but even this-
simple fact cannot easily be translated into a mathematical equation.

Today, I would like to share with yon a set of ideas which T have found very useful
in studying phenomena of this kind. These ideas have led to practical tools that T hope
you will find useful on your next encounter with a cause and effect.

It 15 hard to ymagine anyone here who is noi dealing with cause and effect.

Whether you are evaluating the impact of bilin-
gunal education programs or runmng an experument
on how mice distmguish food from danger or spec-
ulating about why Julins Caesar crossed the Rubi-
con or diagnosing a patient or predicting who will
win the presidential election, you are dealing with
a tangled web of canse—effect considerations,

The story that I am about to tell iz aimed at
helping researchers deal with the complexities of
such considerations, and to clarify their meaning.

This lecture 1s divided into three parts,

I begim with a brief historical sketch of the
difficulties that various disciplines have had with
causation,

Next I outline the ideas that reduce or elimm-
nate several of these historical difficulties.
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Finally, in honor of my engineering back-
ground, I will show how these ideas lead to sum-
ple practical tools, which will be demonstrated in
the areas of stanstics and social science,

In the beginnimg, as far as we can tell, cansaf.
ity was not problematic,

The urge to ask way and the capacity (o fing
causal explanations came very early in human
development,

The bible, for example, tells us that Just a few
hours after tasting from the tree of knowledge,
Adam 15 already an expert 1n caunsal arguments,

‘When God asks: “Did you eat from thar tree?

This 15 what Adam replies: “The woman whom
you gave to be with me, She handed me the fruit
from the tree; and 1 ate.”

Eve 15 just as skillful: “The serpent deceived me, and I ate.”

The thing to notice about this story is that God did not ask for explanation, only for
the facts — 1t was Adam who felt the need to explain. The message 15 clear: cansal ex-
planation 15 a man-made concept.

Another interesting point about the story: explananions are used exclusively for pass-
ng responsibilities.

Indeed, for thousands of years explanations had no other function, Therefore, only

Giods, people, and antmals could cause things to happen, not objects, events, or physical
processes.

Natural events entered into cansal explananons much later because, in the ancient
world, events were simply predetermuned.

Storms and earthquakes were controlled by the
angry gods {slide 2] and could not in themselves
assuime causal responsibility for the consequences.

Even an erratic and unpredictable event such
as the roll of a die [31 was not considered a chance
event but rather a divine message demanding
proper interpretation,

One such message gave the prophet Jonah the
scare of his life when he was identified as God’s
renegade and was thrown gverboard [4].

Quoting from the book of Jonah: “And the
satlors said: ‘Come and let us cast lots to find out
who 18 to blame for this ordeal.’ So they cast lots
and the lot fell on fonah.”

. purpose.
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Obvyiously, on this luxury Phoe-
niclan cruiser, “casting lots” was
used not for recreation but for
communication — a one-way mo-
dem for processing messages of vi-
tal importance.
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In summary, the agents of
causal forces 1n the ancient world
were either deities, who cause
things to happen for a purpose, or human beings and animals, who possess free will, for
which they are punished and rewarded,

This notion of causation was naive, but clear and unproblematic,

The problems began, as usual, with engineering; when machines had to be con-
structed to do useful jobs [51.

As engineers grew ambitious, they decided that
the earth, too, can be moved [6], but not with a sin-
gle lever,

Systems consisting of many pulleys and
wheels [7], one driving another, were needed for
projects of such magmtude,

And, once people started building multistage
systems, an mieresting thing happened to cansal-
ity — physical objects pegan acquiring causal
character,

When a system like that broke down, it was
futile to blame God or the operator — mstead, a
broken rope or a rusty pulley were more useful
explanations, simply because these could be replaced easily and make the system work.,

At that point in history, Gods and humans ceased to be the sole agents of causai
forces — lifeless objects and processes became partners responsibility.

A wheel turned and stopped becawse the wheel preceding 1t trned and stopped — the
human operator became secondary.

Not surprisingly, these new agents of causation fook on some of the characteristics
of their predecessors — Gods and humans.

Natural objects became not only
carriers of credit and blame but also
carmers of force, will, and even

Aristotle regarded explanation
m terms of a purpose to be the only
complete and satisfactory expla-
nation for why a thing is what 1t 1s.




334

D

(D

Ll

nep

‘DT P e o § B
nan Fa been o e vow
taven vy v ok syl ruoe 1
%mn Tomn e tho by S
' wour pome  novra
reapn e a8 wo
e $0 e bt Tow w
et 400 W e m
v G M v Pess e
#07 poH ¥y $0 oo wmr g
i e ek o ame v
s £ et B Ny QrEson
Frganna wesn o e ey,
e §o 3 i en i Yo
awh B3 pron b & Hanan
LRETAI TN K fih e o
2wt 530 3an Y jowaposhor
A1 305 b pemeny mar b
20 wan yerin < wish do Bp
DR 00 MR TR RN R
3 20 Trws b et b phe
i v ndy ogon b pan m
* wh e

b Sacw e ria RO
20 | e atsa

ob kporan me W e o
Piwhe naona Cvm g e
w s runho han P o
o s maorite o = ke
0000006000000 R iy
¥ £ 00000000000000008
v urvoat e rete b
S I RS e P
i3 rnIp i g o Smm

A% 4 1 | oen e rpnm

g afth a1 40 v TERGDE P
B a3 pvuee Sy b ba
PANR TP DIVIED RN
mah Fm TR wro Npee
poaka e A+ RS S

Epilogue

He even called it a final cause — namely, the final
aim of scientific inguiry.

From that pomnt on, causality served a dual role:
causes were the targets of credit and blame on one
hand and the carriers of phystcal flow of control
on the other.

This duality survived in relanve tranquility [8]
until about the time of the Renatssance, when it
encountered conceptual difficulties.

What happened can be seen on the title page
[91 of Recordes's book “The Castle of Knowl-
edge.” the first science book m English, published
m 1575,

The wheel of fortune 15 turned, not by the wis-
dom of God, but by the ignorance of man.

And, as God’s role as the finai cause was taken
over by human knowledge, the whole notion of
causal explanation came under attack.
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Itis hard for us to appreciate today how strange
that idea sounded in 1638, barely 50 vears after
the mtroduction of algebraic notation by Vieta. To
proclaim algebra the universed langnage of science
would sound today like proclamming Esperanto the
language of economucs.

Why would Namre agree to speak algebra? Of
all langunages?

But you can't argue with success.

The distance traveled by an object turned out
mdeed to be proportional 1o the square of the ime,

Even more successful than predicting out-
comes of experiments were the computational as-
pects of algebraic equations.

They enabled engimeers, for the first time m
history, to ask “how 0™ questions in addition to
“what if” queshons.

In addition to asking; “What if we narrow the

. 3 3 l))! "
The erosion started with the work of Gafileo [101. beam, Will it carry the load?”, they began to ask
more difficult questions: “How to shape the beam so that it will carry the load?” [14]
This was made possible by the availability of methods for solving equations.
‘The algebraic machinery does not discrimimate among variables; instead of predicting
behavior in terms of parameters, we can tom things around and solve for the parameters

Most of #s know Galileo as the man who was brought before by the inquisition and
unprisoned [11] for defending the heliocentric theory of the world.

But while all that was gomg on, Galileo also managed to quetly engineer the most
profound revolution that science has ever known.
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This revolution, expounded in his 1638 book
“Discorsi” [12], published 1n Leyden, far from
Rome, consists of two maxims;

One, description first, explanation second —
that 15, the “how" precedes the “why"”; and

Two, description 1s carried out in the language
of mathematics; namely, equations.

Ask not, said Galileo, whether an object falls
because it 18 pulled from below or pushed from
above,

Ask how well you can predict the trme it takes
for the object to travel a certan distance, and how
that time will vary from object to object and as the
angle of the track changes,

Moreover, said Galileo, do not attempt to an-
swer such questions m the qualitative and slippery
nuances of human language; say 1t m the form of
mathematical aquations [13].

N RN i in terms of the desired behavior.

Let us concentrate now on Galileo's first
maxum —~ “deseription first, explanation second” —
because that idea was taken very seriousty by the
sceenusts and changed the character of science
from speculative to empirical.

Physics became flooded with empirical laws
that were extremely useful.

Snell’s law [15], Hooke's law, Ohm's law, and
Joule's law are examples of purely emypirical gen-
eralizations that were discovered and used much
before they were explamned by more fundamental
principles.

Philosophers, however, were retuctant to gve
up the igea of causal explanation and continued to
search for the orgin and justification of those suc-
cessful Galilean equations.

For exampte, Descartes ascribed cause to efer-
nal truth.
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Liebmz made cause a self-evident logical law.

Finally, about one hundred years after Galileo,
a Scottish philosopher by the name of David Hume
[16] carrted Galileo's first maxim to an extreme
[171.

Hume argued convincingly that the why 1s not
merely second to the kow, but that the why 13 to-
tally superflucus as 1t 15 subsumed by the how,

On page 156 of Hume's “Treatise of Human
Nature” {18], we find the paragraph that shook up
causation so thoroughly that 1t has not recovered
to this day.

I atways get a kick reading it: “Thus we re-
member to have seen that species of object we call
Jlame, and to have felt that species of sensation we
call heat. We likewise call to mind their constant
conjunction in ail past instances. Without any far-
ther ceremony, we call the one cause and the oiher

effect, and infer the existence of the one from that of the other.”

Thus, causal connections according to Hume are the product of observations. Cau-
sation 15 a learnable habit of the mind, almost as fictionat as optical illusions and as

transitory as Pavlov's conditioning.
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It is hard to believe that Hume was not aware
of the difficulties inherent in his proposed recipe.

He knew quute well that the rooster crow stands
n constant conjunction to the sunnse, yet it does
not eguse the sun 1o rise.

He knew that the barorpeter reading stands in
constant conjunction to the rain but does not cause
the rain.

Today these difficulties fall under the rubric of
spurious correlations, namely “correlations that
do not impty causation.”

Now, taking Hume's dictum that all knowl-
edge comes from experience encoded in the mind
as correlation, and our observation that correlation
does not imply causation, we are led into our first
riddle of causation: How do people ever acquire
knowledge of causation?

We saw in the rooster example that regular-
1ty of succession 1s not sufficient; what would be
sufficient?

The Art and Science of Cause and Effect

What patterns of experience would justify call-
ing a connection “causal”?

Moteover: What patterns of experietice con-
vince people that a connection 1s “causal™?

If the first riddle concerns the learmmg of
causal connection, the second concerns its usage:
What difference does 1t make if T told vou that a
certain connection 1s or is not caunsal?

Continung our example, what difference does
it make if T told you that the rooster does cause the
sun to rise?

This may sound trivial.

The obvions answer 1s that knowing “what
causes what” makes a big difference m how we act.

If the rooster’s crow causes the sun to rise,
we could make the nght shorter by waking op
our rooster earlier and making him crow - say, by
telling him the latest rooster joke.

But this riddle 1s not as trivial as ¢t seems,
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If cavsal information has an empirical meaning beyond regularity of succession, then

that information should show up in the laws of physics.

But 1t does not!

The philosopher Bertrand Russell made this argument [191 in 1913:

“All philosophers,” says Russell, “imagine that cansation is one of the fundamenta

axioms of science, yet oddly enough, n advanced
sciences, the word ‘cause’ never occurs.... The
faw of causality, I believe, 15 a relic of bygone age,
surviving, like the monarchy, only because it 1s er-
raneously supposed to de no harm.”

Another philosopher, Patrick Suppes, who az-
gued for the importance of causality, noted that:

“There is scarcely an 1ssue of ‘Physical Re-
view’ that does not contain at least one article us-
ing either ‘cause’ or ‘causality’ in 1ts titie.”

What we conclude from this exchange is that

physicists talk, write, and think one way and for-
mulate physics in another.
+ Such bilinguat activity would be forgiven if
causality was used merely as a conventent ¢commu-
mication device — a shorthand for expressing com-
plex patterns of physicat relationships that would
otherwise take many equations to write,
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Take, for instance, Newton's law;

Epilogue

After all! Science 15 full of
abbreviations: We use “mulliply x
by 5" instead of “add x io 1tself 5
tumes”; we say “density” instead of
“the ratio of weight to volume.”

Why pick on causality?

“Because camsality s differ-
ent,” Lord Russell would argue, “It
could not possibly be an abbrevi-
ation, because the laws of physics
are all symmetrical, gomg both
ways, while causal relations are
unidireciional, going from cause fo
effect”

The rules of algebra permit vs to write this law 11 a wild vanety of syntacte forms,

all meaning the same thing — that if we know any two of the three quantities, the third is

determuned.

Yet, m ordinary discourse we say that force causes acceleration — not that accelera-

tion causes force, and we feel very strongly about this distinction.

Likewise, we say that the ratio f/a helps us
deternune the mass, not that 1t cauyes the mass.,

Such distinctions are not supported by the
equations of physics, and this leads us to ask
whether the whole causal vocabulary 1s purely
metaphysical, “surviving, like the monarchy ..."

Fortunately, very few physicists paid atten-
tion to Russell’s enigma. They continued to wiite
equations 1n the office and talk canse—effect n the
cafeteria; with astonishing success they smashed
the atom, mmvented the transistor and the laser,

The same 15 true for engineering.

But in another arena the iension could not go
unnoticed, because 1 that arena the demand for
distinguishing causal from other relationships was
very explicit.

This arena is statistics.

The story begins with the discovery of corre-
lation, about one hundred years ago.

The Art and Science of Cause and Effect

Francis Galton [20], mventor of fingerprinting
and cousin of Charles Darwin, quite understand-
ably set out to prove that talent and virtue run m
families.

Galton's investigations drove him 1o consider
various ways of measuring how properties of one
ctass of individuals or objects are related to those
of another class.

In 1888, he measured the length of a person's
foremrm and the size of that person’s head and
asked to what degree can one of these quantities
predict the other [21],

He stumbled wpon the following discovery: If
you plot one quantity against the other and scale
the fwo axes properly, then the slope of the best-fit
line has some nice mathematical properties. The

slope 18 | only when one quantity can predict the.

other precisely; 1t 15 zero whenever the prediction
18 no better than a random guess, and, most re-
markably, the slope is the same no matter if you
plot X agamnst ¥ or ¥ aganst X.
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“It 15 easy to see,” said Galton, “that co-relatton must be the consequence of the
variations of the two organs being partly due to common causes.”

Here we have, for the first tiune, an objective
measure of how two variables are “retated” to each
other, based strictly on the data, clear of human
judgment or Opinion.

Galton's discovery dazzled one of his disci-
ples, Karl Pearson [22], now considered to be one
of the founders of modem statistics.

Pearson was 30 years old at the tume, an ac-
complished physicist and philosopher about to turn
lawyer, and this 15 how he describes, 43 years later
[231, his mitial reaction to Galton's discovery:

“1 felt like & buccancer of Drake’s days ...,

“Iinterpreted .. . Galton to mean that there was
a category broader than causation, namely corre-
lation, of which causation was only the limit, and
that this new conception of comelation brought
psychology, anthropology, medicine, and sociol-
ogy in large parts mto the field of mathematical
treatment.”
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PURGING CAUSALITY FROM PHYSICS?
*+ BERTRAND RUSSELL (1913):

* PATRICK SUPPES (1970):

In advanced sciences the word “cause”
never occurs, Causality is a relic of
bygone ago.

“Causality” is commonly used by
physicists
The symmetry enlgma f

f/m

Epilogue

Now, Pearson has been de-
scribed as a man “with the kind of
drive and defermination that took
Hannibal over the Alps and Marco
Polo to China.”

When Pearson felt like a buc-
caneer, you can be sure he gets his
bounty,

The year 1911 saw the publica-
tion of the third edition of his book
“The Grammar of Science.” It con-
tained a new chapter titled “Contin-
gency and Correlation — The Insuf-
fictency of Causation,” and this 15
what Pearson says m that chapter;

“Beyond such discarded fundamentals as “matter” and “force’ lies still another fetish
amidst the inscrutable arcana of modern sctence, namely, the category of cause and

effect.”

And what does Pearson substitute for the archatc category of cause and effect? You
wouldn’t believe your ears: contingency tables [241.

“Such a table is termed a contingency table, and the ultimate scientific statement of
description of the relation between two things can always be thrown back upon such a

contingency table....

“Once the reader realizes the nature of such a table, he will have grasped the essence
of the conception of association between canse and effect ”

Thus, Pearson categorically denies the need for an independent concept of causal

relation beyond correlation.

take root.

He held this view throughout his life and, ac-
cordingly, did not mention causation 1n any of his
technical papers.

His crusade against anumistic concepts such as
“will” and “force™ was so fierce and his rejection
of determinism so absolute that he exterminaied
causation from statistics before it had a chance to

It took another 25 years and another strong-
willed person, Sir Ronald Fisher [25], for statis-

The Ari and Science of Cause and Effect

And that 1s roughly where things stand today.

If we count the number of doctoral theses, re-
search papers, or textbooks pages writfen on causa-
fion, we get the impression that Pearson still rules
stansnes.

The “Encyclopedia of Statistical Science” de-
votes (welve pages to correlation but only two
pages to causation — and spends one of those pages
demonstrating that “correlation does not imply
cansatron.”

Let us hear what modern statisticians say about
causality.

Philip Dawid, the current editor of “Biomet-
rika” (the journai founded by Pearson), admuts:
“Causal inference 15 one of the most 1mportant,
most subtle, and most neglected of all the prob-
lems of stafistics.”

Terry Speed, former president of the Biomet-
¢ Soctety {(whom you might remember as an ex-
pert witness at the O. J. Simpson murder trial),
declares: “Considerations of causality should be
treated as they have always been treated in statis-
ues: preferably not at all but, if necessary, then
with very great carel.
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Sir David Cox and Nanny Wermuth, m a book published just a few months ago,
apologize as follows: “We did not 1n this book use the words causal or causality. .. Our

reason for caution is that it is rare that firm con-
clusions about cauvsality can be drawn from one
study.”

This position of caution and avoidance has par-
atyzed many fields that look to statistics for guid-
ance, especlally economics and social science.

A leading social scientist stated in 1987: “It
would be very healthy if more researchers aban-
don thinking of and usig terms such as cause and
effect.”

Can this state of affairs be the work of just one
person? Even a buccaneer like Pearson?

D

ticians o formulate the randomzed experiment —
the only seientifically proven method of testing
causal relations from data, and to this day, the one
and only causal concept permitted in mainstream
statistics.

1 doubt if,

But how eise can we explain why statistics,
the field that has given the world such powerful
concepts as the testing of hypothesis and the
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design of expenment, would give up so early on
causation?

One obvious explanation 1s, of course, that cau-
sation 1§ mech harder to measure than correlanon.

Correlations can be estimated directly 1n a sin-
gle uncontrolled study, while causal conclusions
require controlled experiments.

But this 15 too simplistic; statisticians are not
easily deterred by difficulties, and children man-
age to lean cause effect relatrons without running
controlled experiments.

The answer, I believe lies deeper, and it has to
do with the official language of statistics — namely,
the language of probability.

This may come as a surprise to some of you but
the word cause 18 not m the vocabulary of prob-
ability theory; we cannot express in the langnage
of probabilities the sentence, mud does not cause
raw — all we can say is that the two are mutually correlated or dependent - meamng that
if we find one, we can expect the other.

Naturally, if we lack a language to express a certam concept explicitly, we can’t ex-
pect to develop scientific activity around that concept.

Scientific development requires that knowledge be transferred reliably from one smgy
to another and, as Galileo showed 350 years ago, such transference requires the preci-
ston and computational benefits of a formal language.

I will soon come back to discuss the importance of language and notation, but first I
wish to conclude this historical sur-
CONTINGENCY AND CORRELATION 5o vey witha tale from another field in

which causation has had its share of
B, occurs #,, B, ocours m,, times, and so on. We thus

are able to obtain a general distribution of B's for each difficulty.
class of A that we can form, and were we to go through
. N . N .

the whole population, N, of Als m this manner we should ence ~ the science of symbols — a
obtamn a table of the following kind :(— )

field that is relatively new vet one
that has placed a tremendous em-
phasis on language and notation and

therefore may offer a useful per-

This time 1t is computer sci-
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Put yourself in the shoes of this robet [26] who
is trying to make sense of what 18 going on m a
kitchen or a laboratory.

Conceptually, the robot’s problems are the
same as those faced by an economust seeking to
model the national debt or an epidemiologist at-
templing to understand the spread of a disease.

Our robot, econormst, and epidemiologsst all
ieed to irack down cause—effect relarions from

the environment, using limited actions and noisy
abservations,

This puis them right at Hume's first riddle of
causation: Aow?

The second riddle of causation also plays arole
n the robot’s world.

Assume we wish to take a shortcut and teach
our robot all we know abowt cause and effect in this room [27].

-
How should the rebot orgamze and make use of this information?

Thus, the two philosophical riddles of causation are now translated into concrete and
practical questions:

How should a robot acquire causal mformation through interaction with 1ts envi-

ronment? How should a robot process causal information received from its creator—
programmer?

Again, the second riddle 15 not as trvial as st might seem. Lord Russell’s warning

that causal relations and physical equations are Incompatible now surfaces as an appar-
ent flaw in logic,

For exampie, when given the information, “If the grass 15 wet, then 1t rained” and
“If we break this bottle, the grass will get wet.” the computer will conclude “If we break
this bottle, then it rained” 128].

The swiftness and specificity
with which such programming bugs
surface have made Artificial Intet-
ligence programs an ideal labora-
tory for studying the fine print of
CALSALION.

This brings us to the second part
of the lecture: how the second riddle
of causation can be solved by com-
binmmng equations with graphs, and
how this solution makes the first
riddle less formidable.
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The overriding ideas w0 this solution are:

“Fasy, man! that hurts!” Firsi - treating causation as & summary of be-

havior under interventions; and

Second —nsmg equations and graphs as a math-
ematical langnage within which causal thoughts
can be represented and manipulated.

And to put the two together, we need a third
concept: Treatmg mterventions as a surgery over
equanons.

Let us start with an area that uses causation
extensively and never had any trouble with 1t: en-
gimeerng.

Here 15 an engmeering drawing [29] of a circmt
diagram that shows canse—effect relations among
the signals in the cwewmt. The circuit consists of
and gates and or gates, each performing some log-
ical function between input and output. Let us ex-
amine this diagram closely, since its simplicity and
familtanty are very deceiving. This diagram 1s, 1n

fact, one of the greatest marvels of science. Tt 1s
capable of conveying more mformation than mil-
lions of algebraic equations or probability functions or logical expressions. What makes
this diagram so much more powerful is the ability to predict not merely how the circuit
behaves under normal conditions but also how the circuat will behave under millions of
abnormal conditions. For example, given this circuit diagram, we can easily tell what
the ontput will be if some input changes from 0 to 1. This is normal and can easily be
expresséd by a stmple mput-output equation. Now comes the abnormal part, We can
also tell what the output will be when we set ¥ to 0 (zero), or tie it to X, or change this
and gate to an or gate, or when we perform any of the millions of combinations of these
operations. The designer of this cir-

cuit did not anticipate or even con-
sider such weird interventons, yet,
miraculovsly, we can predict their

PROGRAMMER'S NIGHTMARE
consequences, How? Where does

tnput: 1. "If the grass is wet, this representational power come
then it rained” from?

2. “If we break this bottle,
the grass will get wet”

CAUSATION AS A

It comes from what early econ-
orusts called autonomy. Namely,
the gates 1n this diagram represent
independent mechamsms — it 15
easy to change one without chang-
mg the other, The diagram takes

Output: “If we break this bottle,

then it rained”

advantage of this independence and
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describes the normal functioning of the circuni us-
ing precisely those building blocks that will remain
unaltered under inftervention.

My colleagues from Boelter Hall are surely
wondering why I stand here before you blather-
ing about an engneerng triviality as if it were the
eighth wonder of the world. I have three reasong
for doing this. First, I will try to show that there 15
a ot of unexplotted wisdom in practices that en-
gineers take for granted,

Second, I am trying to remind economists and
socat scientists of the benefits of this diagram-
manc method. They have been using a smmilar
method on and off for over 75 years, called struc-
tural equattons modeling and path diagrams, but
in yecent years they have allowed algebraic con-
venience to suppress the diagrammatic represen-
ation, together with 1ts benefits. Finally, these di-
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WHY THEY ARE NEEDED

CAUSAL MODELS:

agrams capiure, I my opmnion, the very essence of causation — the ability to predict the
consequences of abnormal eventualities and new manipulations. In 8, Wright's diagram
[30], for example, it 1s possible to predict what coat pattern the guinea-pig litter is likely
to have if we change environmental factors, shown here by as input (E), or even ge-
netic factors; shown as intermediate nodes between parents and offsprings (H). Such
predictions cannot be made on the basis of algebraic or correlational analysis.

Viewing causality this way explams Why scentists pursue causal explanations with

such zeal and why attaining a causal model is accomp

understanding” and “being in control”

aned with a sense of gaming “deep

Deep understanding 1311 means kmowmg not merety how things behaved vester-
day but also how things will behave under new hypothetical circumstances, control

bemg one such circumstance. Inter-
estingly, when we have such under-
standing we feel “in control” even if
we have no practical way of controi-
ling things. For example, we have

no practical way to control celes-
tial motion, and still the theory of
gravitation gives us a feeling of un-
derstanding and conirol, because it
provides a blueprint for hypotheti-
cal control. We can predict the ef-
fect on tidal waves of unexpected
new events — say, the moon being
hit by a meteor or the gravitauonal
constant suddenly diminishing by a
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factor of 2 — and, just as important,
the gravitational theory grves us the
assurance that ordinary manipula-
tion of earthly things will not con-
trol tidal waves. Ii 18 not surpris-
ing that causal models are viewed
as the litmus test for distinguishing
deliberate reasonmg from reactive
or mstinctive response. Birds and
monkeys may possibly be tramed to
perform complex tasks such as fix-
g a broken wire, but that requires
trial-and-error tfraiung. Deliberate
reasoners, on the other hand, can
anticipate the consequences of new
manipetations without ever trymng
those manipulations,

Let us magnify [32] a portion of the ciromit diagram so that we can wnderstand why
the diagram can predict outcomes that equations can not. Let us also switch from logi-
cal gates to linear equattons (to make everyone here more comfortal;;le?, and assume we
are dealing with a system comtaining Just two components: a multiplier and an adder.
The multiplier takes the input and multiplies 1t by a factor of 2; the adder takes its input
and adds a 1 to 1it. The equations describing these two components are given here on the
left,

But are these equations eguivalent to the diagram on the 11ght? Obwviously not!

If they were, then let us switch the variables around, and the resulting two et}uatlons
should be equivalent to tiie circuit shown below. But these two circuits are different.
The top one tells us that if we physically manipulate ¥ it will affect Z, while the bottom
one shows that mamputating ¥ will affect X and will have no effect on Z. Moreover,
perfornung some additional algebraic operations on our equations, we can obtain two
new equations, shown at the bot-

tom, which pont to no structure ar
all; they simply represent two con-

EQUATIONS VS. DIAGRAMS

stramnts on three variables without
telling us how they mfluence each
y= other,
z
Let us examne more closely the
mental process by which we deter-

L= ¥R y mine the effect of physically ma-
¥=7z-, X-— “—Z nipnlatmg ¥ — say, settng ¥ to 0

[331.
2X-2¥+Z-i=0 Clearly, when we set ¥ to 0,
2X+2Y-3Z+3=0

the relation between X and Y is no

longer gven by the multiplier — a
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new mecharism now controls ¥, m
which X has no say. In the equa-
{ional representation, this amounts
to replacing the equation ¥ = 2%
by a new equation ¥ = 0 and solv-
ing a new set of equations, which
gives Z = ), If we perform this
surgery on the lower parr of equa-
tions, representing the lower maodel,
we get of couwrse a different soly-
tion. The second equation will need
1o be replaced. which will yield
X =0 and leave Z unconstrained.,

We now see how this model of

intervention leads to a formal definition of causation:

Z by mampulatmg ¥, namely,
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INTERVENTION AS SURGERY

preutervention postintervention 0
M Y=10 X .+ 1 z
Z=Y+1 Z=Y4i(=D) Y
X= yn X=¥72 (=0) 0

JES o ¥Y=0 XZ

RX-2Y+Z-1=0
2X+27-3Z+3=0

impossible

&

“Y is a cause of Z if we can change

if after surgreally removing the equation for ¥, the soju-
tion for Z will depend on the new vaiue we substitute for ¥.”

We also see how vital the

diagram is 1 this process. The diagram tells us which equation Is fo be deleted when

we manipilate ¥, That mformation 15 totally washed out wh

en we transform the equa-

tions mto algebraicatly equivalent form, as shown at the bottom of the screen. From
this pawr of equations alone, it 15 mmpossible to predict the result of setting ¥ to (, be-

cause we do not know what surgery to perform — there is no

for ¥.»

such thing as “the equation

In summary, intervention amounts to o surgery on equations (guided by a diagram)

and causation means predicting the

consequences of such a surgery.

This 15 a universal theme that goes beyond physical systems. In fact, the idea of
modeling interventions by “wipmg out” equations was first proposed in 1960 by an

economist, Herman Wold, but his te

achings have all but disappeared from the economics

literatore. Mistory books attribute this mysterious disappearance to Wold's personality,

but I'tend to believe that the reason ;
mathematicians; they fought hard
to keep their algebra clean and for-
mal, and they could not agree to
have it contaminated by gimmicks
such as diagrams, And as we see
on the screen, the surgery operation
makes 10 mathematical sense with-
out the diagram, as it is sensitive to
the way we write the equations.

Before expounding on the prop-
erties of this new mathematical op-
eration, let me demonstrate how
useful it 1s for clarifying concepts
In statistics and economics.

zoes deeper: Early econometricians were very careful

INTERVENTION AS SURGERY (Cont.)

Example 1. Controlled expenmentation

Uncontrolled conditions Experimental conditions

Soclo-aconomic
status

Socio-economic

status
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INTERVENTION AS SURGERY (Cont.)

Why do we prefer conirolled ex-
periment over uncontrolled smidies?

Example 2. Policy analysis

Made! underlying data

Assume we wish to study the effect
of some drug treatment on recovery
of patients suffering from a given
Madel for policy evaluation)  gigorder The mechanism govern-

Economc Economic mg the behavior of each patient 1s
conditions conditions stmilar in structure to the crrenit di-

agram we saw earlier, Recovery

Tax Tax is a function of both the rreatment
and other factors, such as socioeco-

Econamic Economic nomic conditions, life style, diet,
consequencas consequences age, et cetera. Only one such factor

L“‘ 1s shown here [341. Under uncon-

trolled conditions, the choice of treatment is up to the patients and may depend on the
patients” socioeconommc backgrounds. This creates a problem, because we canct tall if
changes 1 recovery rates are due fo treatment or to those background factors. What we
wish to do is compare patients of like backgrounds, and that is precisely what Fisher's
randomized experiment accomplishes. How? It actually consists of two parts, random-
1zation and infervention,

Intervention means that we change the natural behavior of the individual: we separate
subjects mto two groups, called treatment and control, and we convince the subjects to
cbey the experimental policy. We assign treatment to some patients who, under normal
crrcomstances, will not seek treatment, and we give placebo to patients who otherwise
would recerve treatment. That, in our new vocabulary, means Surgery — wWe are severmg
one functional link and replacing it with another. Fisher's greai msight was that con-
necting the new link to a random coin flip guarantees that the link we wish io break
1§ actually broken. The reason 15 that a random
coin is assumed to be unaffected by anything we
can measure on a rmacroscopic level — mcluding,
of course, a patient’s socloeconomic background,

This picture provides a meanmgful and formal
rationale for the umversally accepted procedure of
randomized trials. In contrast, our next example
uses the surgery idea to point out inadequacies m
widely accepted procedures,

The example [351 involves a government offi-
cial trymng to evaluate the economic consequences
of some policy — say, taxation. A deliberate de-
cision 1o raise or lower taxes 1§ a surgery on the
model of the economy because it modifies the con-
ditions prevailing while the model was built. Eco-
nomic models are built on the basis of data taken
over some period of time, and during this petiod
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of time taxeg were lowered and raiged in response
10 some economic conditions or political pressure.
However, when we evatuare a policy, we wish to

\

compare alternative policies under the same eco-
homue conditions - namely, we wish to sever this IN
link that, 1n the past, has tred policies (o those con-
ditions. In this setup, 1t is of course 1mpossible o
connect our policy to a coin togs and run a con-
trolled experiment; we do not have the time for
that, and we might rnn the economy before the
€Xperiment 15 over, Nevertheless the anaiysis that 4% /

we should conduct is to wfer the behavior of this g

mutilated model from data governed by a nonmn-
tilated model.

1 said should conduct because you will not
find such analysis in any ecenomics textbook, As
I mentioned earlier, the surgery idea of Herman
Wold was stamped out of the economics literatyre ) SR
1n the 1970s, and all discussions on policy anatysis N N \\\\S\
that I could find assume that the mutilated model \\\ \\\\\\\\
prevails throughout. That taxation is under gov-
érnment control at the trme of evaluation is assumed to be sufficient for treating taxation
as an exogenous variable throughout, when m fact taxation is an endogenous variable
during the_modcl-buifding phase and turns exogenons only when evaluated. Of course, I
am not clamung that rewstating the surgery model
would enable the government to balance its bud-
get overmght, but it is certamly something worth

-,

\
trying. \\
IN
Let us now examine how the SUEgery interpre- S
tatron resolves Russell’s enigma concerning the N
clash between the directionality of causal rela-

tions and the symmetry of physical equations, The
equations of physics are indeed syminetrical, but
Wwhen we compare the phrases “A causes B versus 43,
“B causes A,” we are not tatking about a single \

set of equations. Rather, we are comparing two
world models, represented by two different sets of
cquations: one 1n which the equation for A is sur-

gically removed; the other where the equation for

B is removed. Russell would probably stop us at :
this pomt and ask: “How can you talk about rwo '

world models when in fact there is onty one world

model, given by all the equations of physics put \
iogether?” The answer 1s: yes. If you wish to \\

N,

7

7

s

iy
ey
TilL

L

,
-
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Symmetric equations of motion

inciude the entire umverse tn the

model, causality disappears be-
FROM PHYSICS TO CAUSALITY cause mterventions disappear — the
manipulator and the manipulated
Physics: loose their distnction. However,
Symmetric equations of motion scientists rarsly consider the en-
tirety of the universe as an object of
Causal models: nvestigation. In most cases the sci-
entist carves a piece from the um-
Circumsciption (in vs. out) verse and proclaims that plece i —
locality (autonomy of mechanisms) namely, the focus of investigation,
Intervention = surgery on mechanisms The rest of the universe is then con-
sidered outr or background and 1s

summanzed by what we call bound-
ary conditions. This choice of ins
and ouls creates asymmetry m the way we look at things, and it 1s this asymmetry that per-
mits us to talk about “outside intervention” and hence about causality and cause—effect
directionality.

This can be illustrated quite nicely using Descartes’ classical drawing [36]. As a
whole, this hand-eye system knows nothing about cavsation. It is merely a messy
plasma of particles and photons trying their very best to obey Schroedinger’s equation,
which is symmetric,

However, carve a chunk from it — say, the object part [37] — and we can talk about
the motion of the hand causing this light ray to change angle.

Carve 1t another way, focusmg on the bram
part [38], and 1o and behold it 1s now the light ray
that causes the hand to move — precisely the oppo-
gite direction., The lesson 13 that 1f is the way we
carve up the universe that determunes the direc-
tionality we associate with cause and effect. Such
carving 15 tacitly assumed in every scientific m-
vestigation. In arfificial intelligence it was called
“circumscription” by J. McCarthy, In econonmcs,
crrcumscription amounts to deciding which vari-
ables are deemed endogenons and which exoge-
nous, i# the model or external fo the model.

] ﬁ@i‘bh

N

o

ATy

*,_
K

Let us summarize the essential differences be-
tween equational and causal models {39}, Both use
a set of symmeiric equations to describe normal
conditions. The causat model, however, contams
three additional ingredients: (i) a distinction be-
tween the in and the out; (ii) an assumption that
each egquation corresponds to an mdependent
mechamsm and hence must be preserved as a
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separate mathematical senience:
and (iii) intervenfions that are inter-
preted as surgeries over those mech-
anism. This brings us closer to real-
izing the dream of making causality
a friendly part of physics. But one
ingredient 15 missng: the algebra.
We discussed earlier how mportant
the computational facility of atge-
bra was to scientists and engmeers
in the Galilean era. Can we ex-
pect such algebraic facility to serve
causality as well? Let me rephrase
it differently: Scientific activity, as
we know 1t, consists of two basic

components:
Observations [40] and interventions [41].

The combination of the two is what we call a laboratory [42], a place where we con-
trof some of the conditions and observe others. It so happengd that standard algebras
have served the observational component very well but thusyfﬁi' have not benefitted the
Interventtonat component, This 1s true for the algebra of ‘équauons, Boolean algebra,

angd probability caleulus — all are geared to serve observational sentences but not inter-
ventional seniences. )

Take, for example, probability theory, If we wish to find the chance i rained, given
that we see the grass wet, we can express our question in a formal sentence written like
that: P (Rain | Wet), to be read: the probability of Rain, given Wet [43]. The vertical bar
stands for the phrase: “given that we see.” Not only can we express this question m a
formal sentence, we can also use the machinery of probability theory and transform the
sentence mto other expressions. In our example, the senience on the left can be trans-
formed to the one on the right, if we find it more convement or nformative,

But suppose we ask a different question: “What is the chance it ramed if we make
the grass wet?” We cannot even
eXpress our query 1n the syntax of
probability, because the vertical bar
18 already taken to mean “given that
I'see” We can invent a new symbol
do, and each time we see a do after
the bar we read it given that we do —
but this does not help us compute
the answer to our question, because
the rules of probability do not apply
to this new reading. We know intu-
itively what the answer should be:
P{Rain), because making the grass
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NEEDED: ALGEBRA OF DOING

Available:algebra of seeing
e.g., What is the chance It rained
if we see the grass wet?

P(rain)

POan | wery =7 Poven }

{= P (wet | rain)
Needed: algebra ot doing

e.g., What is the chance it rained
if we make the grass wet?

P (rain | do(wef)) =7 {= P (raim)}

Epilogue

wet does not change the chance of
ramn. But can this mtuitive answer,
and others like 1t, be derived me-
chanically, so as to comfort our
thoughts when intuition fails?

The answer 18 yes, and it takes
a new algebra. First, we assign a
symbol to the new operator “given
thatIdo.” Second, we find the rules
for manipulating sentences contain-
ing this new symbol. We do that
by a process analogous to the way
mathematicians found the rules of
standard algebra.

Imagme that you are a mathematician m the sixteenth century, you are now an expert
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Consider the century-old debate
concermng the effect of smoking on
lung cancer [46]. In 1964, the Sur-
geon General issued a report link-
g cigarette smoking to death,
cancer, and most particularly lung
cancer, The report was based on
nonexperimental studies m which
a strong correlation was found be-
iween smoking and lung cancer,
and the claim was that the corre-
lation found 1s cansal: If we ban
smoking, then the rate of cancer
cases will be roughly the same as
the one we find today among non-
smokers m the population,

RULES OF CAUSAL CALCULUS

Rute 1: Ignoring observations
P(y | do{x}, z w) = P{y | dof{x}, w)
i (Y L Z1X,Wg,
Rule 2: Action/observation exchange
P(y idoix}, de{z}, w) = Py ldo{x},z,w}
iYL ZIX, W,
Rule 3: Ignoring actions -
P(y ldofx}, dofz}, w) = P(y |defx), w)

YN ZIX W
451 G’_"

L Z{

in the algebra of addition, and you feel an urgent need to introduce a new operator, mui-
iiplication, because you are tired of adding a number 1o itself all day long [441. The first
thing you do 15 assign the new operator a symbol: multipty. Then you go down to the
meanmng of the operator, from which you can deduce its riles of transformations, For
example; the commutative law of multiplication can be deduced that way, the associative
law, and so on. We now learn all this 1n high school.

In exactly the same fashion, we can deduce the rules that govemn our new symbol:
do(-). We have an algebra for seemg — namely, probability theory. We have a new op-
erator, with a brand new outfit and a very clear meaning, given to us by the surgery
procedure. The door is open for deduction and the result 18 given in the next slide [45],

Please do not get alarmed, I do not expect you to read these equations nght now,
but I think you can still get the Havor of this new calenlus. It consists of three rules that
permit us to transform expressions involving actions and observations into other expres-
sions of this type. The first allows s to ignore an nrelevant cbservatton, the third to

ignore an irrelevant action, the sec-

Algebra of Multiplication

NEEDED: ALGEBRA OF DOING (Cont.)| ©°"¢ allows us 1o exchange an ac-

tion with an observation of the same

By Analogy fact, What are those symbols on the

Avallable; algsbra of additfon | Available: algebra of seeing

nght? They are the “green lights”
that the diagram gives us when-

These studies came under severe attacks from the tobacco indusiry, backed by some
very prominent stafisticians, among them Sir Ronald Fisher. The claim was that the
observed correlations can afso be explained by a model in which there is no causal con-
nection between smoking and lung cancer, Instead, an unobserved genatype might exisi
that simuliancousty canses cancer and produces an mborn ¢raving for nicotine, Formally,
this claim would be written m our notation as; P(Cancer | do(Smoke)} = P(Cancer),
meaning that making the population smoke or stop smoking would have no effect on the
rate of cancer cases. Controlled experiments could decide between the two medels, but
these are impossible (and now also illegal) to conduct.

This is ali history. Now we enter a hypothety-
cal era where representatives of both sides decide

SMOKING AND CANCER:
HANDLING COMPETING MODELS

to meet and iron out their differences. The tobacco
mdustry concedes that there might be some weak

causal link between smoking and cancer and rep- i. Surgeon General (1964);
resentatives of the health group concede that there G———C  P(ctdofs))= P(cls)
might be some weak links to genetic factors, Ac- | Smokng  Gencer

cordingly, they draw this combined model, and the | 2. Tobacco Industry:

. . <10x Genotypa (unobserved)
question boils down to assessing, from the data, P (| dots)) = P (&)
the strengths of the varions links. They swbmut o ‘o

a.g., ath = bic, eg., Pixlyy= Plx y}
a+(b+0) = (g+b)+c P(y)

New operaticn; aX b New operation: do(z)

Meaning: add a to itself b times|Meaning: swrgery + substitution!

New rules: New rutes: P (xty, do(z)} =7
axbk=bxa,
aX(bxey=(a xb)xe
ex(b+ed=a Xb+a Xe

ever the transformation 1s legal. We
will see them in action on our next
example,

This brings us to part three of
the lecture, where T will demon-
strate how the ideas presented thus
far can be used fo solve new prob-
lems of practical importance.

the query to a statistician and the answer comes
back immediately: impossible, Meaning: there 1s
no way to esiimate the strength from the data, be-
cause any data whatsoever can perfectly fit either
one of these two exireme models. So they give
up and decide to continue the political battte ag || 4 Sombined and refined:
nsual. Before parting, 4 suggestion comes np: per-
haps we can resolve our differences if we measure

Smoking Cancer

3. Cuml_:lned:
.. P (e 1do(s)) = noncomputable
For— 2
Smoking Cancer

P (¢ { do(s)) = computable
# Y

O’ O——0

. . Smokin Tar Cancer 40
some auxiliary factors, For example, since the 2
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TYPICAL DERIVATION IN CAUSAL CALCULUS

L)

Smoking  Tar Cancer
Plctdo{s))=E, Pleldefs), 0 P{t | do{s]) Probability Axicms

=K Plcldofs), dof) P{s 1 dofs)y  Ruled Y
=%, P (el dofs}, do(f)) P (115 Rale2 ¥ . ..
=X Plcldols)) Pitls) Rule 3 Ly
=X EP(cldolr], §) P51 do{r)) £e's) Probability Axioms
=L ZP(cli, &) P{s1do(t}) Ptls)  Rule2 Y.y

hﬂ =L.LPlclt 5 P(s) Plrls) Rule 3 m

Epilogue

causal link model! is based on the
understanding that smoking affects
Iung cancer through the accumula-
tion of tar deposits 1 the lungs, pex-
haps we can measure the amount of
tar deposits m the Jungs of sampled
individuals, and this might provide
the necessary 1nformation for quan-
tifying the links. Both sides agree
that this 1s a reasonable suggestion,
so they submut a new query to the
statistrcian: Can we find the effect
of smoking on cancer assuming that
an intermediate measurement of tar

depostis is available? The statistician comes back with good news: it is computable and,
moreover, the solution 18 given m closed mathematical form. How?

SIMPSON'S PARADOX

(Pearson et al. 1899; Yule 1903; Simpson 1951)

+ Any statistical relationship between two
variables may be reversed by including
additional factors in the analysis.

Application: The adjustment problem

» Which tactors should be included in the
analysis.

The statistictan receives the
problem and treats 1t as a problem
i High School algebra: We need
to compute P{Cancer), under hy-
pothetical achon, from nonexperi-
mentai data — namely, from expres-
sions 1volving no actions. Or: We
need to elimmate the “do” symbol
from the initial expression. The
elimination proceeds like ordinary
solution of aigebraic equation — m
each stage [47], a new rule 15 ap-
plied, licensed by some subgraph
of the diagram, eventually leading

to a formula ipvolving no “do” symbals, which denotes an expression that 15 compuiable
from nonexpenimental data.

You are probably wondermg
whether this derrvation solves the
smoking—cancer debate. The an-
swer 18 no. Even if we could get
the dgata on tar deposits, our model
is quite simplistic, as 1t 15 based on
certam assumnptions that both par-
aes nught not agree to — for -
stance, that there 18 no direct link
between smoking and lung cancer
unmediated by tar deposits. The
model would need to be refined
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then, and we might end up with a
graph contamnmg twenty varnables
or more. There 18 no need to pamc
when someone tells us: “you did
not take this or that factor into ac-
count.” On the contrary, the graph
welcomes such new ideas, because
1t 15 50 easy to add factors and mea-
surements mto the model. Simpie
tests are now available that perrmt
an wvestigator to merely giance at
the graph and decide if we can com-
pute the effect of one variable on
another.

Our next example illustrates how a

1cal means — proven by the new al-
gebra. The problem is called the
adjustment problem or “the covan-
ate selection problem™ and repre-
sents the practical side of Simpson's
paradox [481.

Simpson’s paradox, first no-
ticed by Karl Pearson in 1899, con-
cerns the dismrbing observation
that every statistical relationship
between two variables may be re-
versed by including additional fac-
tors in the amalysis. For example,
you nught run a study and find that

students who smoke get higher grades: however, if you adjust for age, the opposite is true

in every age group, that1s, smoking
predicts lower grades. If you fur-
ther adjust for parent income, you
find that smoking predicts higher
grades agam, 1n every age—income
group, and o on.

Equally disturbing 1s the fact
that no one has been able to tell us
which factors should be mcluded
in the analysis. Such factors can
now be identified by simple graphi-
cal means. The classical case dem-
onstrating Simpson's paradox took
place in 1975, when UC-Berkeley
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THE ADJUSTMENT PROBLEM

S PN

/ \é/ Relevant
y Factors

Given:  Causal graph
Needed: Effect of X on ¥

Decide: Which measurements should be taken?

long-standing problem 1s solved by purely graph-

GRAPHICAL SOLUTION OF
THE ADJUSTMENT PROBLEM

/\/\

1
0Z2

Subproblem:
Test it Z, and Z, are sufficient measurements

STEP1: Z, and Z, should not be
descendants of X

GRAPHICAL SOLUTION OF
THE ADJUSTMENT PROBLEM (Cont.)

/\/

i};y\ z,

STEP 2: Delete all non-ancestors of {X, ¥, 7}
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was wvestigated for sex bias m and that 1s why the adjustment prob-
GRAPHICAL SOLUTION OF graduate adrgmssmn. In this stdy, . lem 1s so critical in the analysis of GRAPHICAL SOLUTION OF
THE ADJUSTMENT PROBLEM (Cont.) overall data showed a higher rate of : observational studies. THE ADJUSTMENT PROBLEM (End)
admussion among male applicants; Consider an observational study A N AN
but, broken down by departments, where we wish to find the effect \0/ z
e \‘ / \ data showed a slight bias m favor of X on ¥, for exampie, freatment » Z
of admtting female applicants. The _ on response 1501, We can think of @ L2
/ explanation is simple: femate appli- maxny factors that are relevant to the — [
cants tended to apply to more com- problem; some are affected by the o6
petitive departments than males, reatment, some are affecting the ~_STEP &: Delete 7, and Z,
and in these departments, the rate of treatment, and some are affecting TEST: If X is disconnected from ¥ in the
STEP 3: Delete all arcs emanating from X admission was low for both males both treatment and response. Some remaining graph, then Z, and z, are
- and females. of these factors may be unmeasur- appropriate measurements

To illustrate this pont, imag- able, such as genetic trait or life

me a fishing boat with two different nets, a large mesh and a small net [49]. A school style; others are measurable, such as gender, age, and salary level. Our problem is

of fish swim toward the beat and to select a subset of these factors for measurement and adjustment so that, if we com-
GRAPHICAL SOLUTION OF seek to pass it. The female fish try pare subjects under the same valve of those measurements and average, we get the right
THE ADJUSTMENT PROBLEM (Cont.} || forthe small-mesh challenge, while result.

the male fish try for the easy route.
The males go through and only fe-

Let us follow together the steps that would be required to test if two candidate mea-

0 surements, Z1 and Z, would be sufficient [51]. The steps are rather simple, and can be
f . \‘/ \/‘J males are caught. Judgmg by the performed manvally even on large graphs. Howevar, to give you the feel of their mech-
o e Zagx I final catch, preference toward fe- anizability, T will go through them rather quickly. Here we go [52-561.
z, males 15 clearty evident, However, A .
l if anatyzed separately, each indi- ‘ t the end of these mampulations, we end up with the answer to our question: X
_> vidual net would surely trap males is disconnected from ¥, then Z; and Z; are appropriate measurements.”
more easily than females, I now wish to summarize briefly the centrat message of this kecture. It t§ true that
STEP 4: Connect any two parents sharing Another example mvolves a testing for canse and effect 15 difficutt. Discovering causes of effects is even more dif-
a common child controversy called “reverse regres- ficwt. But causality 1s not mystical or metaphysical. It can be understood in terms
sion” which occupsed the social of. simple processes, and it can be expressed in a
science literature m the 1970s. Should we, m salary discrimination cases, compare friendly mat_nemaucal language. ready for com-
salaries of equally qualified men buter analysis,
GRAPHICAL SOLUTION OF and women or instead compare . What I have presented to you[ 5toaay is a sort
qualifications of equally paid men of pocket calculator, an abacus [57), to help us
THE ADJUSTMENT PROBLEM (Cont') and women? mvestigate certamn problems of cause and effect
Remarkably, the two choices with mathematical prec131or}. This does not solve
led to opposite conclusions. It all the problems of causality, but the power of
furned out that men earned a higher symbots and mathematics should not be underes-
salary than equally qualified wom- : timated [58].
en and, simultaneously, men were Many scientific discoveries have been delayed
more qualified than equally paid i over the centuries for the lack of a mathematical
women. The moral is that all con- language that can amplify ideas and let scientists
clusions are extremely sensitive to communicate results. I am convinced that many
STEP 5: Strip arrow-heads from all edges which variables we choose to hold discoveries have been delaved in our century for  Fig. 155 Little Johnny and his

constant when we are comparing, tack of a mathematical language that can handle ' ¢alculaung machine.”
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causation, For example, I am sure that Karl Pear-
son could have thougnt up the idea of randomized
expertment m 1901 if he had allowed causal dia-
grams 1nto his mathematics.

But the really challenging problems are sill
ahead: We still do not have a causal understanding
of poverty and cancer and intolerance, and onlky
the accumulation of data and the msight of great
mnds will eventually lead to such understanding,

The data is all over the place, the msight 1s
yours, and now an abacus 18 at your disposal, too,
I hope the combination amplifies each of these
components.

Thank you.
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