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Introduction

In fact, statistical field theory may have even more to offer. It always struck
me that there appears to be a close connection between the basic expressions
underlying item-response theory and the solutions of elementary lattice fields
in statistical physics. For instance, there is almost a one-to-one formal corre-
spondence of the solution of the Ising model (a lattice with nearest neighbor
interaction between binary-valued sites; e.g., Kindermann, Snell, et al. 1980,
Chapter 1) and the Rasch model (Fischer 1974).

—Peter Molenaar (2003, p. 82)

In recent years, network models have been proposed as an alternative way of looking
at psychometric problems (Van der Maas et al. 2006; Cramer et al. 2010; Borsboom and
Cramer 2013). In these models, psychometric item responses are conceived of as proxies for
variables that directly interact with each other. For example, the symptoms of depression
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(such as loss of energy, sleep problems, and low self esteem) are traditionally thought of
as being determined by a common latent variable (depression, or the liability to become
depressed; Aggen, Neale, and Kendler 2005). In network models, these symptoms are
instead hypothesised to form networks of mutually reinforcing variables (e.g., sleep problems
may lead to loss of energy, which may lead to low self esteem, which may cause rumination
that in turn may reinforce sleep problems). On the face of it, such network models offer an
entirely different conceptualization of why psychometric variables cluster in the way that
they do. However, it has also been suggested in the literature that latent variables may
somehow correspond to sets of tightly intertwined observables (e.g., see the Appendix of
Van der Maas et al. 2006), and as the above quote shows, Molenaar (2003) already suspected
that network models in physics are closely connected to psychometric models with latent
variables.

In the current chapter, we aim to make this connection explicit. As we will show, a
particular class of latent variable models (namely, multidimensional Item Response Theory
models) yields exactly the same probability distribution over the observed variables as a
particular class of network models (namely, Ising models). In the current chapter, we exploit
the consequences of this equivalence. We will first introduce the general class of models used
in network analysis called Markov Random Fields. Specifically, we will discuss the Markov
random field for binary data called the Ising Model, which originated from statistical physics
but has since been used in many fields of science. We will show how the Ising Model relates
to psychometrical practise, with a focus on the equivalence between the Ising Model and
multidimensional item response theory. We will demonstrate how the Ising model can be
estimated and finally, we will discuss the conceptual implications of this equivalence.

Notation

Throughout this chapter we will denote random variables with capital letters and pos-
sible realizations with lower case letters; vectors will be represented with bold-faced letters.
For parameters, we will use boldfaced capital letters to indicate matrices instead of vectors
whereas for random variables we will use boldfaced capital letters to indicate a random
vector. Roman letters will be used to denote observable variables and parameters (such as
the number of nodes) and Greek letters will be used to denote unobservable variables and
parameters that need to be estimated.

In this chapter we will mainly model the random vector X> =
[
X1 X2 . . . XP

]
containing P binary variables that take the values 1 (e.g., correct, true or yes) and
−1 (e.g., incorrect, false or no). We will denote a realization, or state, of X with
x> =

[
x1 x2 . . . xp

]
. Let N be the number of observations and n(xxx) the number

of observations that have response pattern xxx. Furthermore, let i denote the subscript of a
random variable and j the subscript of a different random variable (j 6= i). Thus, Xi is
the ith random variable and xi its realization. The superscript −(. . . ) will indicate that
elements are removed from a vector; for example, X−(i) indicates the random vector XXX
without Xi: X−(i) =

[
X1, . . . , Xi−1, Xi+1, . . . .XP

]
, and x−(i) indicates its realization. Sim-

ilarly, X−(i,j) indicates XXX without Xi and Xj and x−(i,j) its realization. An overview of all
notations used in this chapter can be seen in Appendix B.
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Figure 33.1 . Example of a PMRF of three nodes, X1, X2 and X3 , connected by two edges,
one between X1 and X2 and one between X2 and X3.

Markov Random Fields

A network, also called a graph, can be encoded as a set G consisting of two sets: V ,
which contains the nodes in the network, and E, which contains the edges that connect these
nodes. For example, the graph in Figure 33.1 contains three nodes: V = {1, 2, 3}, which are
connected by two edges: E = {(1, 2), (2, 3)}. We will use this type of network to represent
a pairwise Markov random field (PMRF; Lauritzen 1996; Murphy 2012), in which nodes
represent observed random variables1 and edges represent (conditional) association between
two nodes. More importantly, the absence of an edge represents the Markov property that
two nodes are conditionally independent given all other nodes in the network:

Xi ⊥⊥ Xj |X−(i,j) = x−(i,j) ⇐⇒ (i, j) 6∈ E (33.1)

Thus, a PMRF encodes the independence structure of the system of nodes. In the case of
Figure 33.1, X1 and X3 are independent given that we know X2 = x2. This could be due to
several reasons; there might be a causal path from X1 to X3 or vise versa, X2 might be the
common cause of X1 and X3, unobserved variables might cause the dependencies between
X1 and X2 and X2 and X3, or the edges in the network might indicate actual pairwise
interactions between X1 and X2 and X2 and X3.

Of particular interest to psychometrics are models in which the presence of latent
common causes induces associations among the observed variables. If such a common
cause model holds, we cannot condition on any observed variable to completely remove
the association between two nodes (Pearl 2000). Thus, if an unobserved variable acts as a
common cause to some of the observed variables, we should find a fully connected clique
in the PMRF that describes the associations among these nodes. The network in Figure
33.1, for example, cannot represent associations between three nodes that are subject to the

1. Throughout this chapter, nodes in a network designate variables, hence the terms are used interchange-
ably.
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influence of a latent common cause; if that were the case, it would be impossible to obtain
conditional independence between X1 and X3 by conditioning on X2.

Parameterizing Markov Random Fields

A PMRF can be parameterized as a product of strictly positive potential functions
φ(x) (Murphy 2012):

Pr (XXX = xxx) = 1
Z

∏
i

φi (xi)
∏
<ij>

φij (xi, xj) , (33.2)

in which
∏
i takes the product over all nodes, i = 1, 2, . . . , P ,

∏
<ij> takes the product over

all distinct pairs of nodes i and j (j > i), and Z is a normalizing constant such that the
probability function sums to unity over all possible patterns of observations in the sample
space:

Z =
∑
xxx

∏
i

φi (xi)
∏
<ij>

φij (xi, xj) .

Here,
∑
xxx takes the sum over all possible realizations of XXX. All φ(x) functions result in

positive real numbers, which encode the potentials: the preference for the relevant part of
XXX to be in some state. The φi(xi) functions encode the node potentials of the network;
the preference of node Xi to be in state xi, regardless of the state of the other nodes in
the network. Thus, φi(xi) maps the potential for Xi to take the value xi regardless of the
rest of the network. If φi(xi) = 0, for instance, then Xi will never take the value xi, while
φi(xi) = 1 indicates that there is no preference for Xi to take any particular value and
φi(xi) =∞ indicates that the system always prefers Xi to take the value xi. The φij(xi, xj)
functions encode the pairwise potentials of the network; the preference of nodes Xi and
Xj to both be in states xi and xj . As φij(xi, xj) grows higher we would expect to observe
Xj = xj whenever Xi = xi. Note that the potential functions are not identified; we can
multiply both φi(xi) or φij(xi, xj) with some constant for all possible outcomes of xi, in
which case this constant becomes a constant multiplier to (33.2) and is cancelled out in the
normalizing constant Z. A typical identification constraint on the potential functions is to
set the marginal geometric means of all outcomes equal to 1; over all possible outcomes of
each argument, the logarithm of each potential function should sum to 0:∑

xi

lnφi(xi) =
∑
xi

lnφij(xi, xj) =
∑
xj

lnφij(xi, xj) = 0 ∀xi, xj (33.3)

in which
∑
xi

denotes the sum over all possible realizations for Xi, and
∑
xj

denotes the
sum over all possible realizations of Xj .

We assume that every node has a potential function φi(xi) and nodes only have a rel-
evant pairwise potential function φij(xi, xj) when they are connected by an edge; thus, two
unconnected nodes have a constant pairwise potential function which, due to identification
above, is equal to 1 for all possible realizations of Xi and Xj :

φij(xi, xj) = 1 ∀xi, xj ⇐⇒ (i, j) 6∈ E. (33.4)

From Equation (33.2) it follows that the distribution of XXX marginalized over Xk and
Xl, that is, the marginal distribution ofXXX−(k,l) (the random vectorXXX without elements Xk
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and Xl), has the following form:

Pr
(
XXX−(k,l) = xxx−(k,l)

)
=
∑
xk,xl

Pr (XXX = xxx)

= 1
Z

∏
i 6∈{k,l}

φi (xi)
∏

<ij 6∈{k,l}>
φij (xi, xj) (33.5)

∑
xk,xl

φk(xk)φl(xl)φkl(xk, xl) ∏
i 6∈{k,l}

φik(xi, xk)φil(xi, xl)

 ,
in which

∏
i 6∈{k,l} takes the product over all nodes except node k and l and

∏
<ij 6∈{k,l}>

takes the product over all unique pairs of nodes that do not involve k and l. The expression
in (33.5) has two important consequences. First, (33.5) does not have the form of (33.2);
a PMRF is not a PMRF under marginalization. Second, dividing (33.2) by (33.5) an
expression can be obtained for the conditional distribution of {Xk, Xl} given that we know
XXX−(k,l) = xxx−(k,l):

Pr
(
Xk, Xl |XXX−(k,l) = xxx−(k,l)

)
= Pr (XXX = xxx)

Pr
(
XXX−(k,l) = xxx−(k,l))

= φ∗k(xk)φ∗l (xl)φkl(xk, xl)∑
xk,xl

φ∗k(xk)φ∗l (xl)φkl(xk, xl)
, (33.6)

in which φ∗k(xk) = φk(xk)
∏
i 6∈{k,l} φik(xi, xk) and φ∗l (xl) = φl(xl)

∏
i 6∈{k,l} φil(xi, xl). Now,

(33.6) does have the same form as (33.2); a PMRF is a PMRF under conditioning. Fur-
thermore, if there is no edge between nodes k and l, φkl(xk, xl) = 1 according to (33.4),
in which case (33.6) reduces to a product of two independent functions of xk and xl which
renders Xk and Xl independent; thus proving the Markov property in (33.1).

The Ising model

The node potential functions φi(xi) can map a unique potential for every possible
realization of Xi and the pairwise potential functions φij(xi, xj) can likewise map unique
potentials to every possible pair of outcomes for Xi and Xj . When the data are binary,
only two realizations are possible for xi, while four realizations are possible for the pair
xi and xj . Under the constraint that the log potential functions should sum to 0 over all
marginals, this means that in the binary case each potential function has one degree of
freedom. If we let all X’s take the values 1 and −1, there exists a conveniently loglinear
model representation for the potential functions:

lnφi(xi) = τixi

lnφij(xi, xj) = ωijxixj .

The parameters τi and ωij are real numbers. In the case that xi = 1 and xj = 1, it can
be seen that these parameters form an identity link with the logarithm of the potential
functions:

τi = lnφi(1)
ωij = lnφij(1, 1).
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These parameters are centered around 0 and have intuitive interpretations. The τi param-
eters can be interpreted as threshold parameters. If τi = 0 the model does not prefer to be
in one state or the other, and if τi is higher (lower) the model prefers node Xi to be in state
1 (-1). The ωij parameters are the network parameters and denote the pairwise interaction
between nodes Xi and Xj ; if ωij = 0 there is no edge between nodes Xi and Xj :

ωij

{
= 0 if (i, j) 6∈ E
∈ R if (i, j) ∈ E

. (33.7)

The higher (lower) ωij becomes, the more nodes Xi and Xj prefer to be in the same (differ-
ent) state. Implementing these potential functions in (33.2) gives the following distribution
for XXX:

Pr (X = x) = 1
Z

exp

∑
i

τixi +
∑
<ij>

ωijxixj

 (33.8)

Z =
∑
x

exp

∑
i

τixi +
∑
<ij>

ωijxixj

 ,
which is known as the Ising model (Ising 1925).

Table 33.1
Probability of all states from the network in Figure 33.1.

x1 x2 x3 Potential Probability
-1 -1 -1 3.6693 0.3514
1 -1 -1 1.1052 0.1058
-1 1 -1 0.4066 0.0389
1 1 -1 0.9048 0.0866
-1 -1 1 1.1052 0.1058
1 -1 1 0.3329 0.0319
-1 1 1 0.9048 0.0866
1 1 1 2.0138 0.1928

For example, consider the PMRF in Figure 33.1. In this network there are three nodes
(X1, X2 and X3), and two edges (between X1 and X2, and between X2 and X3). Suppose
these three nodes are binary, and take the values 1 and −1. We can then model this PMRF
as an Ising model with 3 threshold parameters, τ1, τ2 and τ3 and two network parameters,
ω12 and ω23. Suppose we set all threshold parameters to τ1 = τ2 = τ3 = −0.1, which
indicates that all nodes have a general preference to be in the state −1. Furthermore we
can set the two network parameters to ω12 = ω23 = 0.5. Thus, X1 and X2 prefer to be in the
same state, and X2 and X3 prefer to be in the same state as well. Due to these interactions,
X1 and X3 become associated; these nodes also prefer to be in the same state, even though
they are independent once we condition on X2. We can then compute the non-normalized
potentials exp

(∑
i τixi +

∑
<ij> ωijxixj

)
for all possible outcomes of XXX and finally divide

that value by the sum over all non-normalized potentials to compute the probabilities of
each possible outcome. For instance, for the state X1 = −1, X2 = 1 and X3 = −1, we
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Figure 33.2 . Example of the effect of holding two magnets with a north and south pole
close to each other. The arrows indicate the direction the magnets want to move; the same
poles, as in (b) and (c), repulse each other and opposite poles, as in (a) and (d), attract
each other.

can compute the potential as exp (−0.1 + 0.1 +−0.1 +−0.5 +−0.5) ≈ 0.332. Computing
all these potentials and summing them leads to the normalizing constant of Z ≈ 10.443,
which can then be used to compute the probabilities of each state. These values can be
seen in Table 33.1. Not surprisingly, the probability P (X1 = −1, X2 = −1, X3 = −1) is the
highest probable state in Table 33.1, due to the the threshold parameters being all negative.
Furthermore, the probability P (X1 = 1, X2 = 1, X3 = 1) is the second highest probability
in Table 33.1; if one node is put into state 1 then all nodes prefer to be in that state due to
the network structure.

The Ising model was introduced in statistical physics, to explain the phenomenon of
magnetism. To this end, the model was originally defined on a field of particles connected
on a lattice. We will give a short introduction on this application in physics because it
exemplifies an important aspect of the Ising model; namely, that the interactions between
nodes can lead to synchronised behaviour of the system as a whole (e.g., spontaneous
magnetisation). To explain how this works, note that a magnet, such as a common household
magnet or the arrow in a compass, has two poles: a north pole and a south pole. Figure
33.2 shows the effect of pushing two such magnets together; the north pole of one magnet
attracts to the south pole of another magnet and vise versa, and the same poles on both
magnets repulse each other. This is due to the generally tendency of magnets to align,
called ferromagnetism. Exactly the same process causes the arrow of a compass to align
with the magnetic field of the Earth itself, causing it to point north. Any material which
is ferromagnetic, such as a plate of iron, consists of particles that behave in the same way
as magnets; they have a north and south pole and lie in some direction. Suppose the
particles can only lie in two directions: the north pole can be up or the south pole can be
up. Figure 33.3a shows a simple 2-dimensional representation of a possible state for a field
of 4 × 4 particles. We can encode each particle as a random variable, Xi, which can take
the values −1 (south pole is up) and 1 (north pole is up). Furthermore we can assume that
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(a)

X1 = 1

X2 = 1

X3 = − 1

X4 = 1

X5 = 1

X6 = 1

X7 = − 1

X8 = 1

X9 = 1

X10 = 1

X11 = − 1

X12 = 1

X13 = 1

X14 = − 1

X15 = − 1

X16 = 1

(b)
Figure 33.3 . A field of particles (a) can be repressented by a network shaped as a lattice as
in (b). +1 indicates that the north pole is alligned upwards and −1 indicates that the south
pole is aligned upwards. The lattice in (b) adheres to a PMRF in that the probability of a
particle (node) being in some state is only dependent on the state of its direct neighbors.

the probability of Xi being in state xi only depends on the direct neighbors (north, south
east and west) of particle i. With this assumption in place, the system in Figure 33.3a can
be represented as a PMRF on a lattice, as represented in Figure 33.3b.

A certain amount of energy is required for a system of particles to be in some state,
such as in Figure 33.2. For example, in Figure 33.3b the node X7 is in the state −1 (south
pole up). Its neighbors X3 and X11 are both in the same state and thus aligned, which
reduces stress on the system and thus reduces the energy function. The other neighbors of
X7, X6 and X8, are in the opposite state of X7, and thus are not aligned, which increas-
ing the stress on the system. The total energy configuration can be summarized in the
Hamiltonian function:

H(x) = −
∑
i

τixi −
∑
<i,j>

ωijxixj ,

which is used in the Gibbs distribution (Murphy 2012) to model the probability of XXX being
in some state xxx:

Pr (X = x) = exp (−βH(x))
Z

. (33.9)

The parameter β indicates the inverse temperature of the system, which is not identifiable
since we can multiply β with some constant and divide all τ and ω parameters with that
same constant to obtain the same probability. Thus, it can arbitrarily be set to β = 1.
Furthermore, the minus signs in the Gibbs distribution and Hamiltonian cancel out, leading
to the Ising model as expressed in (33.8).



DRAFT

PLEASE DO NOT CITE WITHOUT PERMISSION 9

The threshold parameters τi indicate the natural deposition for particle i to point
up or down, which could be due to the influence of an external magnetic field not part of
the system of nodes in XXX. For example, suppose we model a single compass, there is only
one node thus the Hamiltonian reduces to −τx. Let X = 1 indicate the compass points
north and X = −1 indicate the compass points south. Then, τ should be positive as the
compass has a natural tendency to point north due to the presence of the Earth’s magnetic
field. As such, the τ parameters are also called external fields. The network parameters
ωij indicate the interaction between two particles. Its sign indicates if particles i and j
tend to be in the same state (positive; ferromagnetic) or in different states (negative; anti-
ferromagnetic). The absolute value, |ωij |, indicates the strength of interaction. For any two
non-neighboring particles ωij will be 0 and for neighboring particles the stronger ωij the
stronger the interaction between the two. Because the closer magnets, and thus particles,
are moved together the stronger the magnetic force, we can interpret |ωij | as a measure for
closeness between two nodes.

While the inverse temperature β is not identifiable in the sense of parameter esti-
mation, it is an important element in the Ising model; in physics the temperature can be
manipulated whereas the ferromagnetic strength or distance between particles cannot. The
inverse temperature plays a crucial part in the entropy of (33.9) (Wainwright and Jordan
2008):

Entropy (XXX) = E [− ln Pr (X = x)]

= −βE
[
− ln exp (−H(x))

Z∗

]
, (33.10)

in which Z∗ is the rescaled normalizing constant without inverse temperature β. The
expectation E

[
− ln exp(−H(x))

Z∗

]
can be recognized as the entropy of the Ising model as defined

in (33.8). Thus, the inverse temperature β directly scales the entropy of the Ising model.
As β shrinks to 0, the system is “heated up” and all states become equally likely, causing a
high level of entropy. If β is subsequently increased, then the probability function becomes
concentrated on a smaller number of states, and the entropy shrinks to eventually only
allow the state in which all particles are aligned. The possibility that all particles become
aligned is called spontaneous magnetization (Lin 1992; Kac 1966); when all particles are
aligned (all X are either 1 or −1) the entire field of particles becomes magnetized, which
is how iron can be turned into a permanent magnet. We take this behavior as a particular
important aspect of the Ising model; behavior on microscopic level (interactions between
neighboring particles) can cause noticeable behavior on macroscopic level (the creation of
a permanent magnet).

In our view, psychological variables may behave in the same way. For example,
interactions between components of a system (e.g., symptoms of depression) can cause
synchronised effects of the system as a whole (e.g., depression as a disorder). Do note that, in
setting up such analogies, we need to interpret the concepts of closeness and neighbourhood
less literally than in the physical sense. Concepts such as “sleep deprivation” and “fatigue”
can be said to be close to each other, in that they mutually influence each other; sleep
deprivation can lead to fatigue and in turn fatigue can lead to a disrupted sleeping rhythm.
The neighborhood of these symptoms can then be defined as the symptoms that frequently
co-occur with sleep deprivation and fatigue, which can be seen in a network as a cluster of
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connected nodes. As in the Ising model, the state of these nodes will tend to be the same
if the connections between these nodes are positive. This leads to the interpretation that
a latent trait, such as depression, can be seen as a cluster of connected nodes (Borsboom
et al. 2011). In the next section, we will prove that there is a clear relationship between
network modeling and latent variable modeling; indeed, clusters in a network can cause
data to behave as if it were genererated by a latent variable model.

The Ising model in Psychometrics

In this section, we show that the Ising model is equivalent or closely related to promi-
nent modelling techniques in psychometrics. We will first discuss the relationship between
the Ising model and loglinear analysis and logistic regressions, next show that the Ising
model can be equivalent to Item Response Theory (IRT) models which dominate psycho-
metrics. In addition, we highlight relevant earlier work on the relationship between IRT
and the Ising model.

To begin, we can gain further insight in the Ising model by looking at the conditional
distribution of Xi given that we know the value of the remaining nodes: X(−i) = x(−i):

Pr
(
Xi |X(−i) = x(−i)

)
= Pr (X = x)

Pr
(
X(−i) = x(−i)

)
= Pr (X = x)∑

xi
Pr
(
Xi = xi,X

(−i) = x(−i)
)

=
exp

(
xi
(
τi +

∑
j ωijxj

))
∑
xi

exp
(
xi
(
τk +

∑
j ωijxj

)) , (33.11)

in which
∑
xi

takes the sum over both possible outcomes of xi. We can recognize this
expression as a logistic regression model (Agresti 1990). Thus, the Ising model can be seen
as the joint distribution of response and predictor variables, where each variable is predicted
by all other nodes in the network. The Ising model therefore forms a predictive network in
which the neighbors of each node, the set of connected nodes, represent the variables that
predict the outcome of the node of interest.

Note that the definition of Markov random fields in (33.2) can be extended to include
higher order interaction terms:

Pr (XXX = xxx) = 1
Z

∏
i

φi (xi)
∏
<ij>

φij (xi, xj)
∏

<ijk>

φijk (xi, xj , xk) · · · ,

all the way up to the P -th order interaction term, in which case the model becomes sat-
urated. Specifying ν...(. . . ) = lnφ...(. . . ) for all potential functions, we obtain a log-linear
model:

Pr (XXX = xxx) = 1
Z

exp

∑
i

νi (xi) +
∑
<ij>

νij (xi, xj) +
∑
<ijk>

νijk (xi, xj , xk) · · ·

 .
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Let n(xxx) be the number of respondents with response pattern xxx from a sample of N
respondents. Then, we may model the expected frequency n(xxx) as follows:

E [n(xxx)] = N Pr (XXX = xxx)

= exp

ν +
∑
i

νi (xi) +
∑
<ij>

νij (xi, xj) +
∑
<ijk>

νijk (xi, xj , xk) · · ·

 , (33.12)

in which ν = lnN−lnZ. The model in (33.12) has extensively been used in loglinear analysis
(Agresti 1990; Wickens 1989)2. In loglinear analysis, the same constrains are typically used
as in (33.3); all ν functions should sum to 0 over all margins. Thus, if at most second-order
interaction terms are included in the loglinear model, it is equivalent to the Ising model and
can be represented exactly as in (33.8). The Ising model, when represented as a loglinear
model with at most second-order interactions, has been used in various ways. Agresti
(1990) and Wickens (1989) call the model the homogeneous association model. Because
it does not include three-way or higher order interactions, the association between Xi and
Xj—the odds-ratio—is constant for any configuration of XXX−(i,j). Also, Cox (1972; Cox
and Wermuth 1994) used the same model, but termed it the quadratic exponential binary
distribution, which has since often been used in biometrics and statistics (e.g., Fitzmaurice,
Laird, and Rotnitzky 1993; Zhao and Prentice 1990). Interestingly, none of these authors
mention the Ising model.

The relation between the Ising model and Item Response Theory

In this section we will show that the Ising model is a closely related modeling frame-
work of Item Response Theory (IRT), which is of central importance to psychometrics. In
fact, we will show that the Ising model is equivalent to a special case of the multivariate
2-parameter logistic model (MIRT). However, instead of being hypothesised common causes
of the item responses, in our representation the latent variables in the model are generated
by cliques in the network.

In IRT, the responses on a set of binary variablesXXX are assumed to be determined by
an set ofM (M ≤ P ) latent variables ΘΘΘ> =

[
Θ1 Θ2 . . . ΘM

]
. These latent variables are

often denoted as abilities, which betrays the roots of the model in educational testing. In
IRT, the probability of obtaining a realization xi on the variable Xi—often called items—is
modeled through item response functions, which model the probability of obtaining one
of the two possible responses (typically, scored 1 for correct responses and 0 for incorrect
responses) as a function of θθθ. For instance, in the Rasch (1960) model, also called the one
parameter logistic model (1PL), only one latent trait is assumed (M = 1 and ΘΘΘ = Θ) and
the conditional probability of a response given the latent trait takes the form of a simple
logistic function:

Pr(Xi = xi | Θ = θ)1PL = exp (xiα (θ − δi))∑
xi

exp (xiα (θ − δi))
,

2. both Agresti and Wickens used λ rather than ν to denote the log potentials, which we changed in this
chapter to avoid confusion with eigenvalues and the LASSO tuning parameter.
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in which δi acts as a difficulty parameter and α is a common discrimination parameter for
all items. A typical generalization of the 1PL is the Birnbaum (1968) model, often called the
two-parameter logistic model (2PL), in which the discrimination is allowed to vary between
items:

Pr(Xi = xi | Θ = θ)2PL = exp (xiαi (θ − δi))∑
xi

exp (xiαi (θ − δi))
.

The 2PL reduces to the 1PL if all discrimination parameters are equal: α1 = α2 = . . . = α.
Generalizing the 2PL model to more than 1 latent variable (M > 1) leads to the 2PL
multidimensional IRT model (MIRT; Reckase 2009):

Pr(Xi = xi |ΘΘΘ = θθθ)MIRT =
exp

(
xi
(
ααα>i θθθ − δi

))
∑
xi

exp
(
xi
(
ααα>i θθθ − δi

)) , (33.13)

in which θθθ is a vector of length M that contains the realization of ΘΘΘ, while αααi is a vector
of length M that contains the discrimination of item i on every latent trait in the multidi-
mensional space. The MIRT model reduces to the 2PL model if αααi equals zero in all but
one of its elements.

Because IRT assumes local independence—the items are independent of each other
after conditioning on the latent traits—the joint conditional probability of XXX = xxx can be
written as product of the conditional probabilities of each item:

Pr(XXX = xxx |ΘΘΘ = θθθ) =
∏
i

Pr(Xi = xi |ΘΘΘ = θθθ). (33.14)

The marginal probability, and thus the likelihood, of the 2PL MIRT model can be obtained
by integrating over distribution f(θθθ) of ΘΘΘ:

Pr(XXX = xxx) =
∫ ∞
−∞

f(θθθ) Pr(XXX = xxx |ΘΘΘ = θθθ) dθθθ, (33.15)

in which the integral is over all M latent variables. For typical distributions of ΘΘΘ, such as
a multivariate Gaussian distribution, this likelihood does not have a closed form solution.
Furthermore, as M grows it becomes hard to numerically approximate (33.15). However,
if the distribution of ΘΘΘ is chosen such that it is conditionally Gaussian—the posterior
distribution of ΘΘΘ given that we observed XXX = xxx takes a Gaussian form—we can obtain a
closed form solution for (33.15). Furthermore, this closed form solution is, in fact, the Ising
model as presented in (33.8).

As also shown by Marsman et al. (2015) and in more detail in Appendix A, after
reparameterizing τi = −δi and −2

√
λj/2qij = αij , in which qij is the ith element of the

jth eigenvetor of ΩΩΩ (with an arbitrary diagonal chosen such that ΩΩΩ is positive definite), the
Ising model is equivalent to a MIRT model in which the posterior distribution of the latent
traits is equal to the product of univariate normal distrbutions with equal variance:

Θj |X = x ∼ N
(
±1

2
∑
i

aijxi,

√
1
2

)
.
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The mean of these univariate posterior distributions for Θj is equal to the weighted sumscore
±1

2
∑
i aijxi. Finally, since

f(θθθ) =
∑
xxx

f(θθθ |XXX = xxx) Pr(XXX = xxx),

we can see that the marginal distribution of ΘΘΘ in (33.15) is a mixture of multivariate
Gaussian distributions with homogenous variance-covariance, with the mixing probability
equal to the marginal probability of observing each response pattern.

Whenever αij = 0 for all i and some dimension j—i.e., none of the items discriminate
on the latent trait—we can see that the marginal distribution of Θj becomes a Gaussian
distribution with mean 0 and standard-deviation

√
1/2. This corresponds to complete

randomness; all states are equally probable given the latent trait. When discrimination
parameters diverge from 0, the probability function becomes concentrated on particular
response patterns. For example, in case X1 designates the response variable for a very easy
item, while X2 is the response variable for a very hard item, the state in which the first
item is answered correctly and the second incorrectly becomes less likely. This corresponds
to a decrease in entropy and, as can be seen in (33.10), is related to the temperature of
the system. The lower the temperature, the more the system prefers to be in states in
which all items are answered correctly or incorrectly. When this happens, the distribution
of Θj diverges from a Gaussian distribution and becomes a bi-modal distribution with two
peaks, centered around the weighted sumscores that correspond to situations in which all
items are answered correctly or incorrectly. If the entropy is relatively high, f(Θj) can be
well approximated by a Gaussian distribution, whereas if the entropy is (extremely) low a
mixture of two Gaussian distributions best approximates f(Θj).

For example, consider again the network structure of Figure 33.1. When we pa-
rameterized all threshold functions τ1 = τ2 = τ3 = −0.1 and all network parameters
ω12 = ω23 = 0.5 we obtained the probability distribution as specified in Table 33.1. We can
form the matrix ΩΩΩ first with zeroes on the diagonal: 0 0.5 0

0.5 0 0.5
0 0.5 0

 ,
which is not positive semi-definite. Subtracting the lowest eigenvalue (−0.707) from the
diagonal gives us a positive semi-definite ΩΩΩ matrix:

ΩΩΩ =

0.707 0.5 0
0.5 0.707 0.5
0 0.5 0.707

 .
It’s eigenvalue decomposition is as follows:

QQQ =

0.500 0.707 0.500
0.707 0.000 −0.707
0.500 −0.707 0.500


λλλ =

[
1.414 0.707 0.000

]
.
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(c)
Figure 33.4 . The distributions of the three latent traits in the equivalent MIRT model to
the Ising model from Figure 33.1

Using the transformations τi = −δi and −2
√
λj/2qij = αij (arbitrarily using the negative

root) defined above we can then form the equivalent MIRT model with discrimination
parameters AAA and difficulty parameters δδδ:

δδδ =
[
0.1 0.1 0.1

]
AAA =

0.841 0.841 0
1.189 0 0
0.841 −0.841 0

 .
Thus, the model in Figure 33.1 is equivalent to a model with two latent traits: one defining
the general coherence between all three nodes and one defining the contrast between the
first and the third node. The distributions of all three latent traits can be seen in Figure
33.4. In Table 33.1, we see that the probability is the highest for the two states in which
all three nodes take the same value. This is reflected in the distribution of the first latent
trait in 33.4a: because all discrimination parameters relating to this trait are positive, the
weighted sumscores ofX1 = X2 = X3 = −1 andX1 = X2 = X3 = 1 are dominant and cause
a small bimodality in the distribution. For the second trait, 33.4b shows an approximately
normal distribution, because this trait acts as a contrast and cancels out the preference for
all variables to be in the same state. Finally, the third latent trait is nonexistent, since all
of its discrimination parameters equal 0; 33.4c simply shows a Gaussian distribution with
standard deviation

√
1
2 .

This proof serves to demonstrate that the Ising model is equivalent to a MIRT model
with a posterior Gaussian distribution on the latent traits; the discrimination parameter
column vector αjαjαj—the item discrimination parameters on the jth dimension—is directly
related to the jth eigenvector of the Ising model graph structure ΩΩΩ, scaled by its jth eigen-
vector. Thus, the latent dimensions are orthogonal, and the rank of ΩΩΩ directly corresponds
to the number of latent dimensions. In the case of a Rasch model, the rank of ΩΩΩ should be 1
and all ωij should have exactly the same value, corresponding to the common discrimination
parameter; for the uni-dimensional Birnbaum model the rank of ΩΩΩ still is 1 but now the the
ωij parameters can vary between items, corresponding to differences in item discrimination.

The use of a posterior Gaussian distribution to obtain a closed form solution for
(33.15) is itself not new in the psychometric literature, although it has not previously
been linked to the Ising model and the literature related to it. Olkin and Tate (1961)
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already proposed to model binary variables jointly with conditional Gaussian distributed
continuous variables. Furthermore, Holland (1990) used the “Dutch identity” to show that
a representation equivalent to an Ising model could be used to characterize the marginal
distribution of an extended Rasch model (Cressie and Holland 1983). Based on these results,
Anderson and colleagues proposed an IRT modeling framework using log-multiplicative
association models and assuming conditional Gaussian latents (Anderson and Vermunt 2000;
Anderson and Yu 2007); this approach has been implemented in the R package “plRasch”
(Anderson, Li, and Vermunt 2007; Li and Hong 2014).

With our proof we furthermore show that the clique factorization of the network
structure generated a latent trait with a functional distribution through a mathematical
trick. Thus, the network perspective and common cause perspectives could be interpreted as
two different explanations of the same phenomena: cliques of correlated observed variables.
In the next section, we show how the Ising model can be estimated.

Estimating the Ising model

We can use (33.8) to obtain the log-likelihood function of a realization xxx:

L (τττ ,ΩΩΩ;xxx) = ln Pr (XXX = xxx) =
∑
i

τixi +
∑
<ij>

ωijxixj − lnZ. (33.16)

Note that the constant Z is only constant with regard to xxx (as it sums over all possible
realizations) and is not a constant with regard to the τ and ω parameters; Z is often called
the partition function because it is a function of the parameters. Thus, while when sampling
from the Ising distribution Z does not need to be evaluated, but it does need to be evaluated
when maximizing the likelihood function. Estimating the Ising model is notoriously hard
because the partition function Z is often not tractable to compute (Kolaczyk 2009). As
can be seen in (33.8), Z requires a sum over all possible configurations of xxx; computing
Z requires summing over 2k terms, which quickly becomes intractably large as k grows.
Thus, maximum likelihood estimation of the Ising model is only possible for trivially small
data sets (e.g., k < 10). For larger data sets, different techniques are required to estimate
the parameters of the Ising model. Markov samplers can be used to estimate the Ising
model by either approximating Z (Sebastiani and Sørbye 2002; Green and Richardson
2002; Dryden, Scarr, and Taylor 2003) or circumventing Z entirely via sampling auxiliary
variables (Møller et al. 2006; Murray 2007; Murray, Ghahramani, and MacKay 2006). Such
sampling algorithms can however still be computationally costly.

Because the Ising model is equivalent to the homogeneous association model in log-
linear analysis (Agresti 1990), the methods used in log-linear analysis can also be used to
estimate the Ising model. For example, the iterative proportional fitting algorithm (Haber-
man 1972), which is implemented in the loglin function in the statistical programming
language R (R Core Team 2014), can be used to estimate the parameters of the Ising
model. Furthermore, log-linear analysis can be used for model selection in the Ising model
by setting certain parameters to zero. Alternatively, while the full likelihood in (33.8) is
hard to compute, the conditional likelihood for each node in (33.11) is very easy and does
not include an intractable normalizing constant; the conditional likelihood for each node
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corresponds to a multiple logistic regression (Agresti 1990):

Li (τττ ,ΩΩΩ;xxx) = xi

τi +
∑
j

ωijxj

−∑
xi

exp

xi
τi +

∑
j

ωijxj

 .
Here, the subscript i indicates that the likelihood function is based on the conditional
probability for node i given the other nodes. Instead of optimizing the full likelihood of
(33.8), the pseudolikelihood (PL; Besag 1975) can be optimized instead. The pseudolikeli-
hood approximates the likelihood with the product of univariate conditional likelihoods in
(33.11):

ln PL =
k∑
i=1
Li (τττ ,ΩΩΩ;xxx)

Finally, disjoint pseudolikelihood estimation can be used. In this approach, each condi-
tional likelihood is optimized separately (Liu and Ihler 2012). This routine corresponds
to repeatedly performing a multiple logistic regression in which one node is the response
variable and all other nodes are the predictors; by predicting xi from xxx(−i) estimates can be
obtained for ωωωi and τi. After estimating a multiple logistic regression for each node on all
remaining nodes, a single estimate is obtained for every τi and two estimates are obtained
for every ωij–the latter can be averaged to obtain an estimate of the relevant network pa-
rameter. Many statistical programs, such as the R function glm, can be used to perform
logistic regressions. Estimation of the Ising model via log-linear modeling, maximal pseu-
dolikelihood, and repeated multiple logistic regressions and have been implemented in the
EstimateIsing function in the R package IsingSampler (Epskamp 2014b).

While the above mentioned methods of estimating the Ising model are tractable, they
all require a considerable amount of data to obtain reliable estimates. For example, in
log-linear analysis, cells in the 2P contingency table that are zero—which will occur often
if N < 2P—can cause parameter estimates to grow to ∞ (Agresti 1990), and in logistic
regression predictors with low variance (e.g., a very hard item) can substantively increase
standard errors (Whittaker 1990). To estimate the Ising model, P thresholds and P (P−1)/2
network parameter have to be estimated, while in standard log linear approaches, rules of
thumb suggest that the sample size needs to be three times higher than the number of
parameters to obtain reliable estimates. In psychometrics, the number of data points is
often far too limited for this requirement to hold. To estimate parameters of graphical
models with limited amounts of observations, therefore, regularization methods have been
proposed (Meinshausen and Bühlmann 2006; Friedman, Hastie, and Tibshirani 2008).

When regularization is applied, a penalized version of the (pseudo) likelihood is op-
timized. The most common regularization method is `1 regularization–commonly known
as the least absolute shrinkage and selection operator (LASSO; Tibshirani 1996)–in which
the sum of absolute parameter values is penalized to be under some value. Ravikumar,
Wainwright, and Lafferty (2010) employed `1-regularized logistic regression to estimate the
structure of the Ising model via disjoint maximum pseudolikelihood estimation. For each
node i the following expression is maximized (Friedman, Hastie, and Tibshirani 2010):

max
τi,ωωωi

[Li (τττ ,ΩΩΩ;xxx)− λPen (ωωωi)] (33.17)
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Where ωωωi is the ith row (or column due to symmetry) of ΩΩΩ and Pen (ωωωi) denotes the penalty
function, which is defined in the LASSO as follows:

Pen`1 (ωωωi) = ||ωωωi||1 =
k∑

j=1,j!=i
|ωij |

The λ in (33.17) is the regularization tuning parameter. The problem in above is equivalent
to the constrained optimization problem:

max
τi,ωωωi

[Li (τττ ,ΩΩΩ;xxx)] , subject to ||ωωωi||1 < C

in which C is a constant that has a one-to-one monotone decreasing relationship with λ (Lee
et al. 2006). If λ = 0, C will equal the sum of absolute values of the maximum likelihood
solution; increasing λ will cause C to be smaller, which forces the estimates of ωωωi to shrink.
Because the penalization uses absolute values, this causes parameter estimates to shrink
to exactly zero. Thus, in moderately high values for λ a sparse solution to the logistic
regression problem is obtained in which many coefficients equal zero; the LASSO results in
simple predictive models including only a few predictors.

Ravikumar, Wainwright, and Lafferty (2010) used LASSO to estimate the
neighborhood—the connected nodes—of each node, resulting in an unweighted graph struc-
ture. In this approach, an edge is selected in the model if either ωij and ωji is nonzero (the
OR-rule) or if both are nonzero (the AND-rule). To obtain estimates for the weights ωij
and ωji can again be averaged. The λ parameter is typically specified such that an optimal
solution is obtained, which is commonly done through crossvalidation or, more recently,
by optimizing the extended Bayesian information criterion (EBIC; Chen and Chen 2008;
Foygel and Drton 2010, 2014; Borkulo et al. 2014).

In K-fold crossvalidation, the data is subdivided in K (usually K = 10) blocks. For
each of these blocks a model is fitted using only the remainingK−1 blocks of data, which are
subsequently used to construct a prediction model for the block of interest. For a suitable
range of λ values, the predictive accuracy of this model can be computed, and subsequently
the λ under which the data were best predicted is chosen. If the sample size is relatively
low, the predictive accuracy is typically much better for λ > 0 than it is at the maximum
likelihood solution of λ = 0; it is preferred to regularize to avoid over-fitting.

Alternatively, an information criterion can be used to directly penalize the likelihood
for the number of parameters. The EBIC (Chen and Chen 2008) augments the Bayesian
information Criterion (BIC) with a hyperparameter γ to additionally penalize the large
space of possible models (networks):

EBIC = −2Li (τττ ,ΩΩΩ;xxx) + |ωωωi| ln (N) + 2γ |ωωωi| ln (k − 1)

in which |ωωωi| is the number of nonzero parameters in ωωωi. Setting γ = 0.25 works well for
the Ising model (Foygel and Drton 2014). An optimal λ can be chosen either for the entire
Ising model, which improves parameter estimation, or for each node separately in disjoint
pseudolkelihood estimation, which improves neighborhood selection. While K-fold cross-
validation does not require the computation of the intractable likelihood function, EBIC
does. Thus, when using EBIC estimation λ need be chosen per node. We have implemented
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`1-regularized disjoint pseudolikelihood estimation of the Ising model using EBIC to select a
tuning parameter per node in the R package IsingFit (Borkulo and Epskamp 2014; Borkulo
et al. 2014), which uses glmnet for optimization (Friedman, Hastie, and Tibshirani 2010).

The LASSO works well in estimating sparse network structures for the Ising model
and can be used in combination with crossvalidation or an information criterion to arrive
at an interpretable model. However, it does so under the assumption that the true model
in the population is sparse. So what if reality is not sparse, and we would not expect many
missing edges in the network? As discussed earlier in this chapter, the absence of edges
indicate conditional independence between nodes; if all nodes are caused by an unobserved
cause we would not expect missing edges in the network but rather a low-rank network
structure. In such cases, `2 regularization—also called ridge regression—can be used which
uses a quadratic penalty function:

Pen`2 (ωωωi) = ||ωωωi||2 =
k∑

j=1,j!=i
ω2
ij

With this penalty parameters will not shrink to exactly zero but more or less smooth out;
when two predictors are highly correlated the LASSO might pick only one where ridge
regression will average out the effect of both predictors. Zou and Hastie (2005) proposed a
compromise between both penalty functions in the elastic net, which uses another tuning
parameter, α, to mix between `1 and `2 regularization:

PenElasticNet (ωωωi) =
k∑

j=1,j!=i

1
2(1− α)ω2

ij + α|ωij |

If α = 1, the elastic net reduces to the LASSO penalty, and if α = 0 the elastic net
reduces to the ridge penalty. When α > 0 exact zeroes can still be obtained in the solution,
and sparsity increases both with λ and α. Since moving towards `2 regularization reduces
sparsity, selection of the tuning parameters using EBIC is less suited in the elastic net.
Crossvalidation, however, is still capable of sketching the predictive accuracy for different
values of both α and λ. Again, the R package glmnet (Friedman, Hastie, and Tibshirani
2010) can be used for estimating parameters using the elastic net. We have implemented
a procedure to compute the Ising model for a range of λ and α values and obtain the
predictive accuracy in the R package elasticIsing (Epskamp 2014a).

One issue that is currently debated is inference of regularized parameters. Since
the distribution of LASSO parameters is not well-behaved (Bühlmann and Geer 2011;
Bühlmann 2013), Meinshausen, Meier, and Bühlmann (2009) developed the idea of us-
ing repeated sample splitting, where in the first sample the sparse set of variables are
selected, followed by multiple comparison corrected p-values in the second sample. Another
interesting idea is to remove the bias introduced by regularization, upon which ‘standard’
procedures can be used (Geer, Bühlmann, and Ritov 2013).As a result the asymptotic distri-
bution of the so-called de-sparsified LASSO parameters is normal with the true parameter
as mean and efficient variance (i.e., achieves the Cramér-Rao bound).. Standard techniques
are then applied and even confidence intervals with good coverage are obtained. The limi-
tations here are (i) the sparsity level, which has to be ≤

√
n/ ln(P ), and (ii) the ’beta-min’
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assumption, which imposes a lower bound on the value of the smallest obtainable coefficient
(Bühlmann and Geer 2011).

Finally, we can use the equivalence between MIRT and the Ising model to estimate
a low-rank approximation of the Ising Model. MIRT software, such as the R package mirt
(Chalmers 2012), can be used for this purpose. More recently, Marsman et al. (2015) have
used the equivalence also presented in this chapter as a method for estimating low-rank
Ising model using Full-data-information estimation. A good approximation of the Ising
model can be obtained if the true Ising model is indeed low-rank, which can be checked by
looking at the eigenvalue decomposition of the elastic Net approximation or by sequentially
estimating the first eigenvectors through adding more latent factors in the MIRT analysis
or estimating sequentially higher rank networks using the methodology of Marsman et al.
(2015).

Example analysis

To illustrate the methods described in this chapter we simulated two datasets, both
with 500 measurements on 10 dichotomous scored items. The first dataset, dataset A,
was simulated according to a multidimensional Rasch model, in which the first five items
are determined by the first factor and the last five items by the second factor. Factor
levels where sampled from a multivariate normal distribution with unit variance and a
correlation of 0.5, while item difficulties where sampled from a standard normal distribution.
The second dataset, dataset B, was sampled from a sparse network structure according
to a Boltzmann Machine. A scale-free network was simulated using the Barabasi game
algorithm (Barabási and Albert 1999) in the R package igraph (Csardi and Nepusz 2006)
and a random connection probability of 5%. The edge weights where subsequently sampled
from a uniform distribution between 0.75 and 1 (in line with the conception that most
items in psychometrics relate positively with each other) and thresholds where sampled
from a uniform distribution between −3 and −1. To simulate the responses the R package
IsingSampler was used. The datasets where analyzed using the elasticIsing package in R
(Epskamp 2014a); 10-fold crossvalidation was used to estimate the predictive accuracy of
tuning parameters λ and α on a grid of 100 logarithmically spaced λ values between 0.001
and 1 and 100 α values equally spaced between 0 and 1.

Figure 33.5 shows the results of the analyses. The left panels show the results for
dataset A and the right panel show the result for dataset B. The top panels show the
negative mean squared prediction error for different values of λ and α. In both datasets,
regularized models perform better than unregularized models. The plateaus on the right of
the graphs show the performance of the independence graph in which all network parameters
are set to zero. Dataset A obtained a maximum accuracy at α = 0 and λ = 0.201, thus
in dataset A `2-regularization is preferred over `1 regularization, which is to be expected
since the data was simulated under a model in which none of the edge weights should equal
zero. In dataset B a maximum was obtained at α = 0.960 and λ = 0.017, indicating that
in dataset B regularization close to `1 is preferred. The middle panels show visualizations
of the obtained best performing networks made with the qgraph package (Epskamp et al.
2012); green edges represent positive weights, red edges negative weights and the wider
and more saturated an edge the stronger the absolute weight. It can be seen that dataset
A portrays two clusters while Dataset B portrays a sparse structure. Finally, the bottom
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Figure 33.5 . Analysis results of two simulated datasets; left panels show results based on
a dataset simulated according to a 2-factor MIRT Model, while right panels show results
based on a dataset simulated with a sparse scale-free network. Panels (a) and (b) show the
predictive accuracy under different elastic net tuning parameters λ and α, panels (c) and
(d) the estimated optimal graph structures and panels (e) and (f) the eigenvalues of these
graphs.
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panels show the eigenvalues of both graphs; Dataset A clearly indicates two dominant
components whereas Dataset B does not indicate any dominant component.

These results show that the estimation techniques perform adequately, as expected.
As discussed earlier in this chapter, the eigenvalue decomposition directly corresponds to
the number of latent variables present if the common cause model is true, as is the case in
dataset A. Furthermore, if the common cause model is true the resulting graph should not
be sparse but low rank, as is the case in the results on dataset A.

The interpretation of latent variables in psychometric models

Since Spearman’s (1904) conception of general intelligence as the common determi-
nant of observed differences in cognitive test scores, latent variables have played a central
role in psychometric models. The theoretical status of the latent variable in psychometric
models has been controversial and the topic of heated debates in various subfields of psychol-
ogy, like those concerned with the study of intelligence (e.g., Jensen 1998) and personality
(McCrae and Costa 2008). The pivotal issue in these debates is whether latent variables
posited in statistical models have referents outside of the model; that is, the central ques-
tion is whether latent variables like g in intelligence or “extraversion” in personality research
refer to a property of individuals that exists independently of the model fitting exercise of
the researcher (Borsboom, Mellenbergh, and Van Heerden 2003; Van der Maas et al. 2006;
Cramer et al. 2010). If they do have such independent existence, then the model formula-
tion appears to dictate a causal relation between latent and observed variables, in which
the former cause the latter; after all, the latent variable has all the formal properties of a
common cause because it screens off the correlation between the item responses (a property
denoted local independence in the psychometric literature; Borsboom 2005; Reichenbach
1991). The condition of vanishing tetrads, that Spearman (1904) introduced as a model
test for the veracity of the common factor model is currently seen as one of the hallmark
conditions of the common cause model (Bollen and Lennox 1991).

This would suggest that the latent variable model is intimately intertwined with a
so-called reflective measurement model interpretation (Edwards and Bagozzi 2000; Howell,
Breivik, and Wilcox 2007), also known as an effect indicators model (Bollen and Lennox
1991) in which the measured attribute is represented as the cause of the test scores. This
conceptualization is in keeping with causal accounts of measurement and validity (Bors-
boom, Mellenbergh, and Van Heerden 2003; Markus and Borsboom 2013) and indeed seems
to fit the intuition of researchers in fields where psychometric models dominate, like per-
sonality. For example, McCrae and Costa (2008) note that they assume that extraversion
causes party-going behavior, and as such this trait determines the answer to the question
“do you often go to parties” in a causal fashion. Jensen (1998) offers similar ideas on
the relation between intelligence and the g-factor. Also, in clinical psychology, Reise and
Waller (2009, p. 26) note that ‘to model item responses to a clinical instrument [with IRT],
a researcher must first assume that the item covariation is caused by a continuous latent
variable’.

However, not all researchers are convinced that a causal interpretation of the rela-
tion between latent and observed variable makes sense. For instance, McDonald (2003)
notes that the interpretation is somewhat vacuous as long as no substantive theoretical
of empirical identification of the latent variable can be given; a similar point is made by
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Borsboom and Cramer (2013). That is, as long as the sole evidence for the existence of a
latent variable lies in the structure of the data to which it is fitted, the latent variable ap-
pears to have a merely statistical meaning and to grant such a statistical entity substantive
meaning appears to be tantamount to overinterpreting the model. Thus, the common cause
interpretation of latent variables at best enjoys mixed support.

A second interpretation of latent variables that has been put forward in the literature
is one in which latent variables do not figure as common causes of the item responses, but as
so-called behavior domains. Behavior domains are sets of behaviors relevant to substantive
concepts like intelligence, extraversion, or cognitive ability (Mulaik and McDonald 1978;
McDonald 2003). For instance, one can think of the behavior domain of addition as being
defined through the set of all test items of the form x + y = . . .. The actual items in
a test are considered to be a sample from that domain. A latent variable can then be
conceptualized as a so-called tail-measure defined on the behavior domain (Ellis and Junker
1997). One can intuitively think of this as the total test score of a person on the infinite set of
items included in the behavior domain. Ellis and Junker (1997) have shown that, if the item
responses included in the domain satisfy the properties of monotonicity, positive association,
and vanishing conditional independence, the latent variable can indeed be defined as a tail
measure. The relation between the item responses and the latent variable is, in this case,
not sensibly construed as causal, because the item responses are a part of the behavior
domain; this violates the requirement, made in virtually all theories of causality, that cause
and effect should be separate entities (Markus and Borsboom 2013). Rather, the relation
between item responses and latent variable is conceptualized as a sampling relation, which
means the inference from indicators to latent variable is not a species of causal inference,
but of statistical generalization.

Although in some contexts the behavior domain interpretation does seem plausible, it
has several theoretical shortcomings of its own. Most importantly, the model interpretation
appears to beg the important explanatory question of why we observe statistical associations
between item responses. For instance, Ellis and Junker (1997) manifest conditions specify
that the items included in a behavior domain should look exactly as if they were generated
by a common cause; in essence, the only sets of items that would qualify as behavior domains
are infinite sets of items that would fit a unidimensional IRT model perfectly. The question
of why such sets would fit a unidimensional model is thus left open in this interpretation.
A second problem is that the model specifies infinite behavior domains (measures on finite
domains cannot be interpreted as latent variables because the axioms of Ellis and Junker
will not be not satisfied in this case). In many applications, however, it is quite hard to
come up with more than a few dozen of items before one starts repeating oneself (e.g.,
think of psychopathology symptoms or attitude items), and if one does come up with larger
sets of items the unidimensionality requirement is typically violated. Even in applications
that would seem to naturally suit the behavior domain interpretation, like the addition
ability example given earlier, this is no trivial issue. Thus, the very property that buys the
behavior domain interpretation its theoretical force (i.e., the construction of latent variables
as tail measures on an infinite set of items that satisfies a unidimensional IRT model) is its
substantive Achilles’ heel.

Thus, the common cause interpretation of the latent variable model seems too make
assumptions about the causal background of test scores that appear overly ambitious given



DRAFT

PLEASE DO NOT CITE WITHOUT PERMISSION 23

the current scientific understanding of test scores. The behaviour domain interpretation is
much less demanding, but appears to be of limited use in situations where only a limited
number of items is of interest and in addition offers no explanatory guidance with respect
to answering the question why items hang together as they do. The network model may
offer a way out of this theoretical conundrum because it specifies a third way of looking
at latent variables, as explained in this chapter. As Van der Maas et al. (2006) showed,
data generated under a network model could explain the positive manifold often found in
intelligence research which is often described as the g factor or general intelligence; a g
factor emerged from a densely connected network even though it was not “real”. This idea
suggests the interpretation of latent variables as functions defined as cliques in a network
of interacting components (Borsboom et al. 2011; Cramer et al. 2010, 2012). As we have
shown in this chapter, this relation between networks and latent variables is quite general:
given simple models of the interaction between variables, as encoded in the Ising model, one
expects data that conform to psychometric models with latent variables. The theoretical
importance of this result is that (a) it allows for a model interpretation that invokes no
common cause of the item responses as in the reflective model interpretation, but (b) does
not require assumptions about infinite behaviour domains either.

Thus, network approaches can offer a theoretical middle ground between causal and
sampling interpretations of psychometric models. In a network, there clearly is nothing that
corresponds to a causally effective latent variable, as posited in the reflective measurement
model interpretation (Bollen and Lennox 1991; Edwards and Bagozzi 2000). The network
model thus evades the problematic assignment of causal force to latent variables like the
g-factor and extraversion. These arise out of the network structure as epiphenomena; to
treat them as causes of item responses involves an unjustified reification. On the other hand,
however, the latent variable model as it arises out of a network structure does not require
the antecedent identification of an infinite set of response behaviors as hypothesized to exist
in behavior domain theory. Networks are typically finite structures, that involve a limited
number of nodes engaged in a limited number of interactions. Each clique in the network
structure will generate one latent variable with entirely transparent theoretical properties
and an analytically tractable distribution function. Of course, for a full interpretation of
the Ising model analogous to that in physics, one has to be prepared to assume that the
connections between nodes in the network signify actual interactions (i.e., they are not
merely correlations); that is, connections between nodes are explicitly not spurious as they
are in the reflective latent variable model, in which the causal effect of the latent variable
produces the correlations between item responses. But if this assumption is granted, the
theoretical status of the ensuing latent variable is transparent and may in many contexts
be less problematic than the current conceptions in terms of reflective measurement models
and behavior domains are.

Naturally, even though the Ising and IRT models have statistically equivalent repre-
sentations, the interpretations of the model in terms of common causes and networks is not
equivalent. That is, there is a substantial difference between the causal implications of a
reflective latent variable model and of an Ising model. However, because for a given dataset
the models are equivalent, distinguishing network models from common cause models re-
quires the addition of (quasi-) experimental designs into the model. For example, suppose
that in reality an Ising model holds for a set of variables; say we consider the depression
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symptoms “insomnia” and “feelings of worthlessness”. The model implies that, if we were
to causally intervene on the system by reducing or increasing insomnia, a change in feelings
of worthlessness should ensue. In the latent variable model, in which the association be-
tween feelings of worthlessness and insomnia is entirely due to the common influence of a
latent variable, an experimental intervention that changes insomnia will not be propagated
through the system. In this case, the intervention variable will be associated only with
insomnia, which means that the items will turn out to violate measurement invariance with
respect to the intervention variable (Mellenbergh 1989; Meredith 1993). Thus, interven-
tions on individual nodes in the system can propagate to other nodes in a network model,
but not in a latent variable model. This is a testable implication in cases where one has
experimental interventions that plausibly target a single node in the system. Fried et al.
(2013) have identified a number of factors in depression that appear to work in this way.

Note that a similar argument does not necessarily work with variables that are causal
consequences of the observed variables. Both in a latent variable model and in a network
model, individual observed variables may have distinct outgoing effects, i.e., affect unique
sets of external variables. Thus, insomnia may directly cause bags under the eyes, while
feelings of worthlessness does not, without violating assumptions of either model. In the
network model, this is because the outgoing effects of nodes do not play a role in the network
if they do not feed back into the nodes that form the network. In the reflective model,
this is because the model only speaks on the question of where the systematic variance in
indicator variables comes from (i.e., this is produced by a latent variable), but not on what
that systematic variance causes. As an example, one may measure the temperature of water
by either putting a thermometer into the water, or by testing whether one can boil an egg
in it. Both the thermometer reading and the boiled egg are plausibly construed as effects of
the temperature in the water (the common cause latent variable in the system). However,
only the boiled egg has the outgoing effect of satisfying one’s appetite.

In addition to experimental interventions on the elements of the system, a network
model rather than a latent variable model allows one to deduce what would happen upon
changing the connectivity of the system. In a reflective latent variable model, the associa-
tions between variables are a function of the effect of the latent variable and the amount of
noise present in the individual variables. Thus, the only ways to change the correlation be-
tween items is by changing the effect of the latent variable (e.g., by restricting the variance
in the latent variable so as to produce restriction of range effects in the observables) or by
increasing noise in the observed variables (e.g., by increasing variability in the conditions
under which the measurements are taken). Thus, in a standard reflective latent variable
model, the connection between observed variables is purely a correlation, and one can only
change it indirectly through the variable that have proper causal roles in the system (i.e.,
latent variables and error variables).

However, in a network model, the associations between observed variables are not
spurious; they are real, causally potent pathways, and thus externally forced changes in
connection strengths can be envisioned. Such changes will affect the behavior of the system
in a way that can be predicted from the model structure. For example, it is well known
that increasing the connectivity of an Ising model can change its behavior from being linear
(in which the total number of active nodes grows proportionally to the strength of external
perturbations of the system) to being highly nonlinear. Under a situation of high connec-
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tivity, an Ising network features tipping points: in this situation, very small perturbations
can have catastrophic effects. To give an example, a weakly connected network of depres-
sion symptoms could only be made depressed by strong external effects (e.g., the death of
a spouse), whereas a strongly connected network could tumble into a depression through
small perturbations (e.g., an annoying phone call from one’s mother in law). Such a vul-
nerable network will also feature very specific behavior; for instance, when the network is
approaching a transition, it will send out early warning signals like increased autocorrela-
tion in a time series (Scheffer et al. 2009). Recent investigations suggest that such signals
are indeed present in time series of individuals close to a transition (Leemput et al. 2014).
Latent variable models have no such consequences.

Thus, there are at least three ways in which network models and reflective latent
variable models can be distinguished: through experimental manipulations of individual
nodes, through experimental manipulations of connections in the network, and through
investigation of the behavior of systems under highly frequent measurements that allow
one to study the dynamics of the system in time series. Of course, a final and direct
refutation of the network model would occur if one could empirically identify a latent
variable (e.g., if one could show that the latent variable in a model for depression items was
in fact identical with a property of the system that could be independently identified; say,
serotonin shortage in the brain). However, such identifications of abstract psychometric
latent variables with empirically identifiable common causes do not appear forthcoming.
Arguably, then, psychometrics may do better to bet on network explanations of association
patterns between psychometric variables than to hope for the empirical identification of
latent common causes.

Discussion

The correspondence between the Ising model and the MIRT model offers novel inter-
pretations of long standing psychometric models, but also opens a gateway through which
the psychometric can be connected to the physics literature. Although we have only begun
to explore the possibilities that this connection may offer, the results are surprising and, in
our view, offer a fresh look on the problems and challenges of psychometrics. In the current
chapter, we have illustrated how network models could be useful in the and conceptualisa-
tion of psychometric data. The bridge between network models and latent variables offers
research opportunities that range from model estimation to the philosophical analysis of
measurement in psychology, and may very well alter our view of the foundations on which
psychometric models should be built.

As we have shown, network models may yield probability distributions that are exactly
equivalent to this of IRT models. This means that latent variables can receive a novel
interpretation: in addition to an interpretation of latent variables as common causes of the
item responses (Bollen & Lennox, 1991; Edwards & Bagozzi, 2000), or as behaviour domains
from which the responses are a sample (Ellis and Junker 1997; McDonald 2003), we can now
also conceive of latent variables as mathematical abstractions that are defined on cliques
of variables in a network. The extension of psychometric work to network modelling fits
current developments in substantive psychology, in which network models have often been
motivated by critiques of the latent variable paradigm. This has for instance happened in
the context of intelligence research (Van der Maas et al. 2006), clinical psychology (Cramer
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et al. 2010; Borsboom and Cramer 2013), and personality (Cramer et al. 2012; Costantini
et al. 2014). It should be noted that, in view of the equivalence between latent variable
models and network models proven here, even though these critiques may impinge on the
common cause interpretation of latent variable models, they do not directly apply to latent
variable models themselves. Latent variable models may in fact fit psychometric data well
because these data result from a network of interacting components. In such a case, the
latent variable should be thought of as a convenient fiction, but the latent variable model
may nevertheless be useful; for instance, as we have argued in the current chapter, the
MIRT model can be profitably used to estimate the parameters of a (low rank) network.
Of course, the reverse holds as well: certain network structures may fit the data because
cliques of connected network components result from unobserved common causes in the
data. An important question is under which circumstances the equivalence between the
MIRT model and the Ising model breaks down, i.e., which experimental manipulations
or extended datasets could be used to decide between a common cause versus a network
interpretation of the data. In the current paper, we have offered some suggestions for further
work in this direction, which we think offers considerable opportunities for psychometric
progress.

As psychometrics starts to deal with network models, we think the Ising model of-
fers a canonical form for network psychometrics, because it deals with binary data and
is equivalent to well-known models from IRT. The Ising model has several intuitive inter-
pretations: as a model for interacting components, as an association model with at most
pairwise interactions, and as the joint distribution of response and predictor variables in
a logistic regression. Especially the analogy between networks of psychometric variables
(e.g., psychopathology symptoms such as depressed mood, fatigue, and concentration loss)
and networks of interacting particles (e.g., as in the magnetisation examples) offers sugges-
tive possibilities for the construction of novel theoretical accounts of the relation between
constructs (e.g., depression) and observables as modelled in psychometrics (e.g., symptoma-
tology). In the current chapter, we only focused on the Ising model for binary data, but of
course the work we have ignited here invites extensions in various other directions. For ex-
ample, for polymotous data, the generalized Potts model could be used, although it should
be noted that this model does require the response options to be discrete values that are
shared over all variables, which may not suit typical psychometric applications. Another
popular type of PMRF is the Gaussian Random Field (GRF; Lauritzen 1996), which has
exactly the same form as the model in (33.18) except that now x is continuous and as-
sumed to follow a multivariate Gaussian density. This model is considerably appealing as
it has a tractable normalizing constant rather than the intractable partition function of the
Ising model. The inverse of the covariance matrix—the precision matrix—can be standard-
ized as a partial correlation matrix and directly corresponds to the Ω matrix of the Ising
model. Furthermore, where the Ising model reduces to a series of logistic regressions for
each node, the GRF reduces to a multiple linear regression for each node. It can easily
be proven that also in the GRF the rank of the (partial) correlation matrix—cliques in
the network—correspond to the latent dimensionality if the common cause model is true
(Chandrasekaran, Parrilo, and Willsky 2012). A great body of literature exists on estimat-
ing and fitting GRFs even when the amount of observations is limited versus the amount
of nodes (Meinshausen and Bühlmann 2006; Friedman, Hastie, and Tibshirani 2008; Foygel
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and Drton 2010). Furthermore, promising methods are now available for the estimation
of a GRF even in nongaussian data, provided the data are continuous (Liu, Lafferty, and
Wasserman 2009; Liu et al. 2012).
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Appendix A
Proof of equivalence between the Ising model and MIRT

To prove the equivalence between the Ising model and MIRT, we first need to rewrite the
Ising Model in matrix form:

p(XXX = xxx) = 1
Z

exp
(
τττ>xxx+ 1

2x
xx>ΩΩΩxxx

)
, (33.18)

in which ΩΩΩ is an P × P matrix containing network parameters ωij as its elements, which
corresponds in graph theory to the adjacency or weights matrix. Note that, in this represen-
tation, the diagonal values of ΩΩΩ are used. However, since xi can be only −1 or 1, x2

i = 1 for
any combination, and the diagonal values are cancelled out in the normalizing constant Z.
Thus, arbitrary values can be used in the diagonal of ΩΩΩ. Since ΩΩΩ is a real and symmetrical
matrix, we can take the usual eigenvalue decomposition:

ΩΩΩ = QQQΛΛΛQQQ>,

in which ΛΛΛ is a diagonal matrix containing eigenvalues λ1, λ2, . . . , λP on its diagonal, and
QQQ is an orthonormal matrix containing eigenvectors qqq1, qqq2, . . . , qqqP as its columns. Inserting
the eigenvalue decomposition into (33.18) gives:

p(XXX = xxx) = 1
Z

exp
(∑

i

τixi

)∏
j

exp

λj
2

(∑
i

qijxi

)2
 . (33.19)

Due to the unidentified and arbitrary diagonal of ΩΩΩ we can force ΩΩΩ to be positive semi-
definite—requiring all eigenvalues to be nonnegative—by shifting the eigenvalues with some
constant c:

ΩΩΩ + cIII = QQQ (ΛΛΛ + cIII)QQQ>.

Following the work of Kac (1966), we can use the the following identity:

ey
2 =

∫ ∞
−∞

e−2ct−t2

√
π

dt,

with y =
√

λj

2 (
∑
i qijxi)

2 and t = θj to rewrite (33.19) as follows:

p(XXX = xxx) = 1
Z

∫ ∞
−∞

exp
(∑

j −θ2
j

)
√
πP

∏
i

exp

xi
τi +

∑
j

−2

√
λj
2 qijθj

 dθθθ.

Reparameterizing τi = −δi and −2
√

λj

2 qij = αij we obtain:

p(XXX = xxx) =
∫ ∞
−∞

1
Z

exp
(∑

j −θ2
j

)
√
πP

∏
i

exp
(
xi
(
ααα>i θθθ − δi

))
dθθθ. (33.20)
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The same transformations can be used to obtain a different expression for Z:

Z =
∫ ∞
−∞

exp
(∑

j −θ2
j

)
√
πP

∑
xxx

∏
i

exp
(
xi
(
ααα>i θθθ − δi

))
dθθθ

=
∫ ∞
−∞

exp
(∑

j −θ2
j

)
√
πP

∏
i

∑
xi

exp
(
xi
(
ααα>i θθθ − δi

))
dθθθ. (33.21)

Finally, inserting (33.21) into (33.20), multiplying by
∏

i

∑
xi

exp(xi(ααα>i θθθ−δi))∏
i

∑
xi

exp(xi(ααα>i θθθ−δi)) , and rearrang-
ing gives:

p(XXX = xxx) =
∫ ∞
−∞

exp
(∑

j
−θ2

j

)
√
πP

∏
i

∑
xi

exp
(
xi
(
ααα>i θθθ − δi

))
∫∞
−∞

exp
(∑

j
−θ2

j

)
√
πP

∏
i

∑
xi

exp
(
xi
(
ααα>i θθθ − δi

))
dθθθ

·
∏
i

exp
(
xi
(
ααα>i θθθ − δi

))
∑
xi

exp
(
xi
(
ααα>i θθθ − δi

)) dθθθ. (33.22)

The first part of the integral on the right hand side of (33.22) corresponds to a
distribution that sums to 1 for a P -dimensional random vector ΘΘΘ:

f(θθθ) ∝
exp

(∑
j −θ2

j

)
√
πP

∏
i

∑
xi

exp
(
xi
(
ααα>i θθθ − δi

))
,

and the second part corresponds to the 2-parameter logistic MIRT probability of the re-
sponse vector as in (33.13):

P (XXX = xxx |ΘΘΘ = θθθ) =
∏
i

exp
(
xi
(
ααα>i θθθ − δi

))
∑
xi

exp
(
xi
(
ααα>i θθθ − δi

)) .
We can look further at this distribution by using Bayes’ rule to examine the conditional
distribution of θθθ given XXX = xxx:

f(θθθ |XXX = xxx) ∝ Pr (XXX = xxx |ΘΘΘ = θθθ) f (θθθ)

∝ exp
(
xxx>AAAθθθ − θθθ>θθθ

)
∝ exp

(
−1

2

(
θθθ − 1

2A
AA>xxx

)>
2III
(
θθθ − 1

2A
AA>xxx

))

and see that the posterior distribution of ΘΘΘ is a multivariate Gaussian distribution:

ΘΘΘ |XXX = xxx ∼ NP

(
±1

2A
>x,

√
1
2I
II

)
, (33.23)
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in which AAA is a matrix containing the discrimination parameters αααi as its rows and ±
indicates that columns aj could be multiplied with −1 due to that both the positive and
negative root can be used in

√
λj

2 , simply indicating whether the items overall are positively
or negatively influenced by the latent trait θ. Additionally, Since the variance-covariance
matrix of θ equals zero in all nondiagonal elements, θ is orthogonal. Thus, the multivariate
density can be decomposed as the product of univariate densities:

Θj |X = x ∼ N
(
±1

2
∑
i

aijxi,

√
1
2

)
.
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Appendix B
Glossary of Notation

Symbol Dimension Description
{. . .} Set of distinct values.
(a, b) Interval between a and b.
P N Number of variables.
N N Number of observations.
X {−1, 1}P Random vector of binary variables.
x {−1, 1}P A possible realization of X.

n(xxx) N Number of observations with response pattern
xxx.

i, j, k and l {1, 2, . . . , P} , j 6= i Subscripts of random variables.
X−(i) {−1, 1}P−1 Random vector of binary variables without Xi.
x−(i) {−1, 1}P−1 A possible realization of X−(i).

X−(i,j) {−1, 1}P−2 Random vector of binary variables without Xi

and Xj .
x−(i,j) {−1, 1}P−2 A possible realization of X−(i).
Pr (. . .) → (0, 1) Probability function.
φi(xi) {−1, 1} → R>0 Node potential function.

φi(xi, xj) {−1, 1}2 → R>0 Pairwise potential function.

τi R Threshold parameter for node Xi in the Ising
model. Defined as τi = lnφi(1).

τττ RP Vector of threshold parameters, containing τi
as its ith element.

ωij R Network parameter between nodes Xi and Xj

in the Ising model. Defined as ωij = lnφij(1, 1).

ΩΩΩ RP×P and symmetrical Matrix of network parameters, containing ωij
as its ijth element.

ωωωi RP The ith row or column of ΩΩΩ.
Pen (ωωωi) RP → R Penalization function of ωωωi.

β R>0 Inverse temperature in the Ising model.

H(xxx) {−1, 1}P → R Hamiltonian function denoting the energy of
state xxx in the Ising model.

ν...(. . .) → R The log potential functions, used in loglinear
analysis.

M N The number of latent factors.
Θ RM Random vector of continuous latent variables.
θ RM Realization of ΘΘΘ.

L (τττ ,ΩΩΩ;xxx) → R Likelihood function based on Pr (XXX = xxx).

Li (τττ ,ΩΩΩ;xxx) → R
Likelihood function based on
Pr
(
Xi = xi |XXX−(i) = xxx−(i)

)
.

λ R>0 LASSO tuning parameter
α (0, 1) Elastic net tuning parameter
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